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       ABSTRACT

This study investigated the effectiveness of a new approach to the analysis of patterns of

physiological response, for the purpose of finding correlations with events in consciousness. The design

of a microcomputer system for the collection and real-time analysis of physiological data is described,

with circuitry and software for the analysis of two EEG channels by amplitude-period and phase

analysis. 

A study is reported in which physiological correlates of five identity states (Berne, 1961; Tart,

1975) were sought in peripheral skin temperature, galvanic skin response (GSR), basal skin resistance

(BSR), muscle tension (EMG) and temporal EEG from the right and left hemispheres. The identity

states were evoked by cartoons from the Ego State Inventory (McCarley,1974) and identified by

subjective reports in the form of multiple-choice responses to the cartoon test items. Useful data were

collected from four subjects. Each subject viewed 49 slides and chose one of five responses for each.

The EEG data were analyzed in 16 dimensional subsets, corresponding to 16 frequency bands and

16 phase angle bands. EEG data from each hemisphere were analyzed as amplitude density, average

amplitude and frequency of occurrence spectra. 

Differences among the five identity states were significant at the .05 level, according to multivariate

analysis of variance of the non-EEG and left hemisphere EEG data. The results of univariate and

multivariate analyses of variance are reported for the various physiological measures.

The Adult ego state showed the lowest arousal in all measures and the Parent ego state showed the

highest arousal in all measures. Amplitude-period analysis of EEG was shown to be a useful analytical

method for finding EEG correlates of identity states, and discriminant analysis proved to be a fruitful

approach to physiological pattern analysis.
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PREFACE

The viewpoint of the experimenter can influence the outcome of research and inevitably colors its

presentation. Humanistic psychology concerns itself with subjective experience more than most

scientific disciplines, and thus it is reasonable for me to briefly introduce myself and tell a little of the

story of how this research came about.

I was born in 1944, and was raised in a family where scientific knowledge was highly valued, but

considered primarily limited to the measurable and tangible. My parents were Irish Catholic and

English Protestant, and both were bitter about the religious conflict which their marriage triggered. My

one brother and I were raised without formal religious training.

I was an amateur scientist from an early age, and always had a small workshop or laboratory for

experiments in physics or chemistry. I began working at the University of California Lawrence

Radiation Laboratory at age 15 and entered the University as an undergraduate student in physics and

mathematics. I had little social experience and was usually alone. I lived in my grandparent's attic,

worked at the Radiation Laboratory and began doing consulting electronics design work while an

undergraduate.

In 1965 a friend who was studying Oriental Philosophy interested me in mysticism and marijuana.

Shortly thereafter, I took LSD, seeking a mystical experience. I was not disappointed, and my life

changed drastically. With all the fervor of a fresh convert, I wanted to share my ecstatic experiences

from LSD with everyone, and I set out to manufacture and give away large quantities of psychedelic

drugs.

I lived in the psychedelic "underground" until 1969, as a drug manufacturer, believing that I was

performing an important public service. In 1969, after an arrest on drug charges (which were eventually
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dropped), I began to realize that the ideals of the "flower children" and the realities of the drug sub-

culture had drifted very far apart. I ended my involvement with drugs.

In 1968 I was a subject in one of Barbara Brown's early experiments with brainwave biofeedback,

and became fascinated by the possibility of learning voluntary control of states of consciousness

through biofeedback training. In 1969 I started a small biofeedback instrument manufacturing

corporation, Aquarius Electronics, with the idea of developing biofeedback instruments which might be

useful in education.

My former associates in the drug "underground" did not end their involvement when I did and went

on to become the targets of a major government investigation. I was eventually indicted for conspiring

with them in 1968 and 1969 and in 1974 I was tried on these felony charges. I -was convicted and sent

to McNeil Island Penitentiary with a 20 year prison term, because of the scope of my manufacturing

activities, and because of my involvement with drug sellers. When I was sentenced, the judge expressed

concern for the victims of drug abuse.

I was released on appeal bond and in 1975 became a Research Fellow of the Humanistic

Psychology Institute. I contracted to study the development of biofeedback systems and methods for

applying them in drug rehabilitation. I began volunteer work in community drug programs in San

Rafael and Mendocino, California. I did not find many victims of psychedelic drug abuse, but I did

become interested and involved in the problems of alcohol and polydrug addicts. In nearly three years

of work in three different programs, using conventional biofeedback systems, I became increasingly

aware of the limitations of simple biofeedback training. In work at Gladman Memorial Hospital in

Oakland, California, I was able to test an innovative approach to biofeedback training, but was still not

satisfied.

This dissatisfaction led me to focus my research on the development of more sophisticated

biofeedback systems which could be used in training for control of states of consciousness more

specific than stress and relaxation. I lost the appeals of my convictions in 1977 and was ordered to
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report back to McNeil Island Penitentiary to resume serving my sentence. This interrupted the

experimental work described in this dissertation and greatly slowed the data analysis portion of the

research.

Thanks to the assistance and cooperation of the Education and Psychology Service departments of

the prison I was allowed to remain intellectually active. Under the supervision of Dr: D. B. Nakashima,

I established a biofeedback stress management training program at the prison. In cooperation with a

U.S. Probation Officer, who had supervised me on appeal bond, and the Education Department, I was

eventually allowed to develop and program a microcomputer communication system for a nonvocal

handicapped young lady. This computer work also made it possible for me to complete the data analysis

for this dissertation.

This dissertation was written inside McNeil Island Penitentiary. Work on it has helped to make my

experience of prison a meaningful and educational one. I hope to continue the research which is begun

here, after my return to society.

I owe thanks to many people for help in making this work possible. Among them are the staffs of

HPI, McNeil Island Penitentiary and Aquarius Electronics, my mother, my brother and Amelia Garcia.
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Chapter 1

INTRODUCTION

The extreme determinist or behaviorist view of people is that they are robots or computers,

programmed by genetic predisposition and environmental inputs (Green & Green, 1977, p. 61). The

humanistic view of people holds that, although they may be biocomputers programmed by genetic and

environmental inputs, they also have volition, free will. We can metaprogram the human biocomputer

(Lilly, 1972); we can choose how to view our environment and change our responses to stimulation.

It is widely accepted that our experience of the world is modified greatly by cognitive processes,

that we create our own reality through selective perception. James (1902/1958) wrote that "our normal

waking consciousness...is but one special type of consciousness, whilst all about it, parted from it by the

filmiest of screens, there lie potential forms of consciousness entirely different....No account of the

universe in its totality can be final which leaves these other forms of consciousness quite disregarded."

Huxley (1954) spoke of a mental "reducing valve" which is part of our perceptual mechanism. This

reducing valve filters the torrent of incoming sensory data down to a manageable volume, but at the

same time, it forces us to construct a limited model of reality. 

Our consciousness varies from moment to moment. A quotation from Ouspensky's (1949) report of

George Gurdjieff's early lectures on philosophy expresses this idea very clearly:

"One of man's important mistakes," he said, "one which must be remembered, is his
illusion with regard to his I.
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"Man such as we know him, the 'man-machine,' the man who cannot 'do,' and with
whom and through whom everything 'happens,' cannot have a permanent and single I. His I
changes as quickly as his thoughts, feelings and moods, and he makes a profound mistake
in considering himself always one and the same person; in reality he is always a different
person, not the one he was a moment ago.

 "Man has no permanent and unchangeable I. Every thought, every mood, every
desire, every sensation, says 'I.' And in each case it seems to be taken for granted that this I
belongs to the Whole, to the whole man, and that a thought, a desire, or an aversion is
expressed by this Whole. In actual fact there is no foundation whatever for this assumption.
Man's every thought and desire appears and lives quite separately and independently of the
Whole. And the Whole never expresses itself, for the simple reason that it exists, as such,
only physically as a thing, and in the abstract as a concept. Man has no individual I. But
there are, instead, hundreds and thousands of separate small I's, very often entirely
unknown to one another, never coming into contact, or, on the contrary, hostile to each
other, mutually exclusive and incompatible. Each minute, each moment, man is saying or
thinking 'I.' And each time his I is different. Just now it was a thought, now it is a desire,
now a sensation, now another thought, and so on, endlessly. Man is a plurality. Man's name
is legion.

"The alternation of I's, their continual obvious struggle for supremacy, is controlled by
accidental external influences. Warmth, sunshine, fine weather, immediately call up a
whole group of I's. Cold, fog, rain, call up another group of I's, other associations, other
feelings, other actions. There is nothing in man able to control this change of I's, chiefly
because man does not notice, or know of it; he lives always in the last I. Some I's, of
course, are stronger than others. But it is not their own conscious strength; they have been
created by the strength of accidents or mechanical external stimuli. Education, imitation,
reading, the hypnotism of religion, caste, and traditions, or the glamour of new slogans,
create very strong I's in man's personality, which dominate whole series of other, weaker,
I's. But their strength is made up of the 'rolls' [as in player piano rolls or computer
programs] in the centers. And all these I's making up a man's personality have the same
origin as these 'rolls'; they are the results of external influences; and both are set in motion
and controlled by fresh external influences.

"Man has no individuality. He has no single, big I. Man is divided into a multiplicity
of small I's.

"And each separate small I is able to call itself by the name of the Whole, to act in the
name of the Whole, to agree or disagree, to give promises, to make decisions, with which
another I or the Whole will have to deal. This explains why people so often make decisions
and so seldom carry them out. A man decides to get up early beginning from the following
day. One I, or a group of I's, decides this. But getting up is the business of another I who
entirely disagrees with the decision and may even know absolutely nothing about it. Of
course the man will again go on sleeping in the morning and in the evening he will again
decide to get up early. In some cases this may assume very unpleasant consequences for a
man. A small accidental I may promise something, not to itself, but to someone else at a
certain moment simply out of vanity or for amusement. Then it disappears, but the man,
that is the whole combination of other I's who are quite innocent of this, may have to pay
for it all his life. It is the tragedy of the human being that any small I has the right to sign
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checks and promissory notes and that the man, that is, the Whole, has to meet them
People's whole lives often consist in paying off the promissory notes of small accidental
I's." (pp. 59-60)

Tart (1975) has proposed a systems model of consciousness in which Gurdjieff's I's are called

identity states. People normally shift from identity state to identity state rapidly without being aware of

the change, identifying completely with each state. There are also larger changes in consciousness with

which most people are familiar. Tart calls these discrete states of consciousness (d-SoC's) because they

are so different from each other and are lacking in smooth continuity between each other. Examples of

d-SoC's include: the normal waking state, nondreaming sleep, dreaming sleep, hypnosis, alcohol

intoxication, marijuana intoxication and meditative states (Tart, 1975, p. 5).

A d-SoC is a unique, dynamic pattern or configuration of psychological structures, an active

system of psychological subsystems, stabilized by a number of processes so that it retains its identity

and function (Tart, 1975). The subsystems Tart lists are: extroperception, introperception, input

processing memory, sense of identity, subconscious, emotions, space/time sense, motor output and

evaluation (Tart, 1975, p. 6).

Metaprogramming the human biocomputer, to use Lilly's (1972) metaphor, implies learning to be

aware of shifts in identity state, changes in consciousness, and to be in control of them. This has been a

traditional goal of spiritual disciplines such as meditation and yoga. If it is possible, it clearly is not a

simple task, since few if any people can demonstrate this skill.

Some scientists, particularly behaviorists, argue that consciousness is too ephemeral a subject for

true scientific study because it is not accessible to objective measurement and rigorous study. Such

researchers usually avoid the use of mentalistic terms such as thinking. They consider thought to be

simply covert speech (Skinner, 1971, 1976), while emotions are considered to be labels which people

attach to complex physiological processes, e.g., fear may be an odd feeling in the abdominal region.
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There is an increasingly convincing body of evidence, which will be discussed in detail later,

indicating that there may be measurable physiological correlates of events in consciousness, patterns of

physiological response associated with emotions, identity states and states of consciousness. There is

also a growing body of evidence that any physiological process which can be measured may be brought

under some degree of voluntary control through biofeedback training (Green & Green, 1977). This

suggests the possibility of learning awareness and voluntary control of identity states and states of

consciousness through biofeedback training.

Statement of the Problem

The study reported here is one step along a path toward the development of powerful biofeedback

systems for teaching awareness of and voluntary control of identity states and states of consciousness.

A methodology for the study of identity states is suggested and tested experimentally by application to a

specialized group of identity states defined by Berne (1961) as ego states and redefined by Dusay

(1977a) as functional egostates (I am using ego state to indicate Berne's structural ego states and

egostate to denote Dusay's functional egostates). This methodology involves the use of a computerized

physiological monitoring system to collect data on patterns of physiological response from subjects who

report their identity state by selecting responses to a projective test. It also involves the use of

multivariate statistical methods of pattern detection and recognition, such as discriminant analysis.

Thus it is hypothesized that distinct physiological correlates of identity states exist and can be

detected by computerized physiological monitoring. More specifically, it is hypothesized that distinct

correlates of Dusay's (1977a, 1977b) functional egostates, as defined by subjects' responses to

McCarley's (1974) test, can be identified in temporal brainwaves and other physiological measures and

that techniques can be developed for the real-time identification of egostates from these correlates.
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A Brief Introduction to Biofeedback

Until recently, it was commonly believed that many body processes are out of the range of

conscious control. Autonomic functions such as blood pressure, peripheral skin temperature, skin

resistance and peristalsis were believed to be inaccessible to will or volition. Some central nervous

system processes, such as the electrical activity of the brain, were also believed to be outside the range

of volition. Although Johannes Schultz, J H. Blair and a few other scientists believed, as early as the

turn of the century, that such processes could be consciously controlled (Green & Green, 1977), general

acceptance of this view has come only after Miller's (1969) report of operant conditioning of autonomic

responses, the development and widespread application of biofeedback training techniques.

Biofeedback is simply the measurement of a biological process and the feeding back of the results

of this measurement to the organism being measured. Looking in a mirror is a biofeedback process in

which information about one's facial expression is fed back. Biofeedback training takes place when

biofeedback information is used to learn conscious control over the process which is measured and fed

back, e.g., when an actor uses a mirror to learn to produce a desired facial expression.

A wide range of body processes have been brought under conscious control through biofeedback

training. Four have come into common clinical use and deserve discussion in more detail here: control

over peripheral skin temperature, muscle tension, the electrical properties of the skin and the electrical

activity of the brain. Although biofeedback training is sometimes done to correct physiological

malfunctions, e.g., training for improved control over damaged muscles, it is the existence of

relationships between physiological and psychological events which make biofeedback training an

interesting metaprogramming technique.

At the present level of development of clinical biofeedback technology, training in the voluntary

control of states of consciousness is practically limited to relaxation or stress management training. The

stumbling block to training in more specific emotional and cognitive states is the fuzziness of the
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relationships between the physiological events which can be measured and trained, and the

psychological events of interest. Even the relationship between psychological stress and physiological

events varies from person to person and from day to day.

Despite these limitations, biofeedback training already enjoys wide acceptance both as a

therapeutic modality for psychosomatic, stress related diseases and as a valuable tool for personal

growth and insight.

A brief discussion of each of the four major modalities of biofeedback training follows, which is

intended as preliminary to the following discussion of physiological pattern analysis and pattern

biofeedback. The emphasis here is on biofeedback as it relates to events in human consciousness, and

the other applications of biofeedback are not discussed. Some of the arguments against single-modality

biofeedback and in support of pattern biofeedback will be presented.

Peripheral skin temperature

Cold hands and feet are a common stress response, resulting from peripheral vasoconstriction

(Mittleman & Wolff, 1939). The "fight or flight response" causes the sympathetic nervous system to

contract the smooth muscles in the peripheral blood vessels, reducing blood circulation and thus

reducing skin temperature at the extremities. A deeply relaxed person may have a fingertip temperature

of about 98 F (Fuller, 1977), while a person under stress may have a fingertip temperature several

degrees colder than room temperature (Mittleman & Wolff, 1939), perhaps as low as 60 F. This

relationship between stress and fingertip temperature makes biofeedback training in handwarming a

popular clinical modality for stress management training (Brown, 1977; Budzynski, 1977).

Peripheral skin temperature is influenced by a number of variables, of which stress is only one. The

environmental temperature has an obvious influence. A variety of drugs, including tobacco, influence

peripheral vasoconstriction. Vigorous exercise increases peripheral circulation, and extended
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immobility decreases it. Even apart from these factors, warm hands do not necessarily imply a state of

relaxation. At best, warm hands are an indication of sympathetic nervous system relaxation (Brown,

1977; Fuller, 1977). 

Skin temperature biofeedback training is often done with a single temperature sensor (e.g.,

thermistor probe) taped to a fingertip. Inconsistent data can be collected due to variations in probe

attachment technique. Time is required for heat to transfer from skin to probe, and when this delay is

added to the body's natural response delay, the latency of skin temperature responses to stimulation may

range from several seconds to nearly a minute. If biofeedback training is done with a single probe,

occasionally a very local response is trained, in which a single finger is warmed while others remain

cold (Fuller, 1977).

Skin temperature training has enjoyed success as a clinical biofeedback training modality. It has

been effective in the relief of vascular (migrane) headaches and Raynaud's disease, as well as in

teaching simple stress management (Fuller, 1977).

The electrical properties of the skin

The electrical properties of the skin have been studied since shortly after Galvani's discovery of the

electrical properties of muscles and nerves (Neumann & Blanton, 1970). There are several different

methods of measuring these properties, some of which are passive techniques which sense naturally

occurring electrical potentials on the skin (EDP or electrodermal  potential), while other methods use a

sensing current to measure the electrical resistance (BSR or basal skin resistance) or conductance (BSC

or basal skin conductance) of the skin.
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The baseline levels of these measurements are influenced by many factors including temperature,

drug effects, location on the skin and the subject's level of arousal. Short term fluctuations in these

measures, as a response to stimulation, are sometimes called galvanic skin responses or GSR. The

discovery that sensory and ideational stimuli produce GSR responses led Jung (1918) and others to use

GSR responses to study events in consciousness. Although the early promise of GSR as a window into

the unconscious mind has not been fulfilled, GSR and BSR measurements are considered one of the

most useful physiological measures of arousal (Neumann & Blanton, 1970).

Biofeedback training in increasing skin resistance (BSR) is used as a deep relaxation technique

(Fuller, 1977; Payne &

Reitano, 1977). Biofeedback training with GSR is used in systematic desensitization, a procedure

in which excessive response to specific stimuli can be unlearned (Fuller, 1977). Skin resistance usually

increases and the size of GSR responses usually decreases with relaxation. But some people with

chronic stress have unusually high BSR and may have unusually large or unusually small GSR

responses (Toomim & Toomim, 1976). The lack of a GSR response to an ideational stimulus can

indicate that it is not arousing, or that the subject is under severe stress, or that the blood sugar level is

low, or that skin temperature is low, etc. and  thus GSR responses are often misinterpreted  When

carefully interpreted, GSR and BSR feedback have proven to be of real value in psychotherapy (Fuller,

1977).

Muscle tension

The relationship between electricity and muscles was discovered by Galvani in the l8th century

(Basmajian, 1974), and stimulated much of the early research in neurophysiology and electricity. By the
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early 20th century, the electrical signals associated with muscle action began being studied (Adrian &

Bronk, 1928) and the use of electromyography (EMG), to measure these signals for diagnostic and

clinical purposes soon became widespread. These uses focussed on traumatic damage to nerves and

muscles, or other neurological pathology, and did not involve much exploring of the relationship

between muscle tension and events in consciousness until after World War II, although some

psychologists did show an early interest in how patterns of muscle tension relate to psychopathology

(e.g., Reich, 1949).

Although skeletal muscles are generally considered to be under conscious control, excess muscle

tension is a common companion of stress, and in many subjects with chronic stress, this excess muscle

tension may remain unnoticed until it becomes painful, and it may be uncontrollable (Fuller, 1977).

EMG  biofeedback training for the deep relaxation of tense muscles has come into common clinical use.

In EMG relaxation training, a person learns to sense the difference between tension and relaxation, a

process of becoming dishabituated to stress, and thus the person learns to gain control over tension and

relaxation. EMG biofeedback training is also done for the retraining of damaged muscles.

EMG biofeedback training in muscle relaxation does not necessarily produce a subjective feeling

of relaxation. Much EMG relaxation training has been done with the sensing electrodes placed on the

frontalis muscle, on the forehead. This electrode placement was chosen because the frontalis muscle is

very difficult to relax completely, and researchers attempting to cure tension headaches hoped that

frontalis relaxation would generalize to other muscles (Brown, 1977). Some researchers report that such

training results in subjective reports of relaxation, but it is more common for researchers to report little

or no correlation between frontalis EMG and subjective reports of relaxation (Brown, l977). Some of
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this lack of correlation is probably due to lack of generalization of muscle relaxation from frontalis to

other muscles.

EMG training has proven to be of clinical value in the relief of tension headaches, in stress

management training and in the rehabilitation of damaged muscles (Fuller, 1977). It is perhaps the most

widely used modality.

The electrical activity of the brain

Hans Berger (1929) is generally credited with having first recorded the human

electroencephalogram (EEG), the electrical activity of the brain, by attaching electrodes to the exposed

cerebral cortex. Later he measured similar but weaker signals on the scalp. Berger hoped to find an

explanation for psychic phenomena in EEG measurements, but was able to find only a vague

relationship between events in consciousness and EEG signals. Although researchers tried to relate

EEG tracings to thoughts and feelings, for many years the only practical applications of EEG

measurements were in the diagnosis of pathology such as epilepsy and brain tumors. 

EEG signals are weak, complex, constantly changing and usually are different when measured at

different scalp locations. For some purposes, they are classified in four broad categories on the basis of

their frequency. Signals between 8 and 13 Hz (Hertz or cycles per second) are called alpha waves

because these were the first pattern identified by Berger (1929). EEG signals above 13 Hz, usually

weaker in amplitude than alpha, are called beta waves and were the second major pattern named by

Berger. Signals between 4 and 8 Hz are called theta waves and those below 4 Hz are called delta. 

Alpha waves, which are usually most prominent in the occipital lobes at the back of the head, are

often associated with states of relaxation and with a lack of visual attention (the occipital lobes of the

brain process visual information), while beta waves are often associated with arousal, activation and

visual attention (Brown, 1977). Research on the different stages of sleep revealed that brainwaves
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progressively slow in frequency as sleep approaches and deepens, from beta to alpha, alpha-theta

(drowsiness), a mixture of 14 Hz sleep spindles with a low voltage background (the one departure from

a smooth decreasing frequency progression), increasing theta, theta-delta and finally delta during deep

dreamless sleep (Dement & Kleitman, 1957). One of the earliest applications of EEG in the study of

consciousness was in the study of sleep and dreaming.

Studies of the brainwaves of Zen monks (Kasamatsu & Hirai, 1966) and yogis (Anand, Chhina &

Singh, 1961) revealed that these meditators have an unusual and characteristic EEG pattern consisting

of unusually high amplitude alpha spreading over the entire scalp during meditation. Although later

research has revealed that only some forms of meditation produce this characteristic EEG pattern

(Brown, 1977), these findings stimulated interest in the relationship between EEG and altered states of

consciousness     

Early EEG biofeedback training was used for the enhancement and suppression of occipital alpha

waves (Kamiya, l969), and reports of the high alpha state were similar to those of meditators. This

stimulated interest in alpha training as an aid to relaxation and meditation. Although some clinical

biofeedback is now done for other purposes, e.g., SMR (sensory motor rhythm) training for control of

epileptic seizures (Sterman & Friar, 1972) and theta training for imagination (Green & Green, 1977),

most clinical EEG training is presently alpha enhancement and alpha suppression training (Fuller,

1977).

As with the other modalities previously discussed, the results of EEG alpha training are

inconsistent. Glaros, Freedman and Foureman (1977) and Glaros (1977) found that the subject's

expectations, as modified by instructions from the experimenter, were the controlling factor, and that

the use of true or false feedback had little influence on subjective reports. Plotkin (1975) reported that

the  "alpha experience"  was not  necessarily associated with either pleasant emotional states or non-

directed thought, as other investigators (Kamiya, 1969) had reported. Tyson and Audette (1977), on the

other hand, found a significant correlation between alpha amplitude and subjective reports.
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As with EMG training, part of this inconsistency may be accounted for by local training effects. A

subject may learn to modify EEG activity in the single scalp area which is monitored without learning

to generalize this modification to other scalp areas. Peper (1972) demonstrated that such local training

can take place, and successfully trained subjects to control alpha production independently in their left

and right central-temporal areas.

Another major factor in these differences, and a common problem in clinical EEG training, is the

amount of time required to produce significant training effects. Hardt (1975) and Ancoli and Kamiya

(1977) have pointed out that many investigators who attempt to test the effects of alpha training fail to

schedule enough training to produce effects. The first few hours of training usually show an

improvement in alpha density and amplitude due to relaxation and becoming accustomed to the

biofeedback training situation. A decrease in alpha production often follows, while the subject

experiments with different strategies for alpha enhancement. By the third to fifth hour, a real training

effect becomes noticeable which continues through perhaps the twentieth hour.

Although brainwave training holds the most promise as a modality for learning voluntary control

of events in consciousness, it is the least clinically applied modality. This is because it is the most

complex, the most misunderstood and the most time consuming (Fuller, 1977).

A Summary of Practical Problems in Biofeedback Learning for Control of Events in
Consciousness

All four modalities commonly used in clinical biofeedback can produce local training effects, in

which a physiological response is learned in only a small part of the body, while the unmonitored

portions of the body may remain unchanged or may change in an undesired direction. Thus, even if

there are specific physiological states corresponding to specific emotional and cognitive states,

conventional biofeedback training is not very successful in detecting and training for these states. There
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are many factors, apart from events in consciousness, which can influence physiological events.

Environmental, dietary and drug effects are among the confounding factors.

A further problem, which is common to all modalities of training, though less relevant to this

research, is the strong influence of expectations and suggestions on the subjective results of biofeedback

training (Wickramasekera, 1976). The placebo effect will probably always be of great importance in

biofeedback training (Stroebel & Glueck, 1973), though refinement of biofeedback systems which

narrow the range of states of consciousness correlating with the trained physiological state may

minimize the relative importance of it.  

Despite the problems which limit the effectiveness of conventional biofeedback training, its

successes have led to new insights into the mind/body problem and into the nature of volition. Mind and

body are now more easily seen as dynamically interacting parts of a system, and volition is a metaforce

which can modify the system's perception and behavior (Green & Green, 1977).

Phares (1976) has pointed out that a person's beliefs regarding locus of control are a self-fulfilling

prophecy. A person who believes that he or she responds helplessly to environmental stimuli is more

likely to do so than a person who feels in control of his or her responses. The demonstration of

successful volitional control of internal processes through biofeedback training is slowly changing our

cultural belief systems regarding locus of control and volition. As new beliefs regarding volition spread,

and more people have personal experience in biofeedback training, more people will have a clearer idea

of how much responsibility they can take for how they feel.

Physiological Data Analysis, Pattern Biofeedback and Events in Consciousness

Before attempting to design biofeedback systems for the voluntary control of identity states, there

are several issues that need to be resolved. First, it must be established that patterns of physiological

response exist which correlate well with identity states. Note, however, that it is not necessary that
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consciousness be purely physiological and completely measurable. Second, it must be demonstrated

that biofeedback training can teach control over patterns of physiological response. And third, such

training in physiological patterns must be investigated to learn if it does imply learning control over

consciousness.

Physiological events and events in consciousness

Several approaches have been used in looking for patterns of physiological response correlated

with states of consciousness. One approach has been simple physiological data recording of subjects

who can produce a desired state of consciousness upon request. The studies of Zen monks (Kasamatsu

& Hirai, 1966) and yogis (Anand, Chhina & Singh, 1961) fall into this category. These researchers were

able to recognize a pattern of response  (unusual abundance of high amplitude alpha waves all over the

scalp) in raw recorded physiological data. The same general approach was used in early studies of sleep

(Dement & Kleitman, 1957), where distinctive brainwave patterns and eye movements were found to be

associated with dreaming, by observation of raw recorded physiological data.

Sadly, physiological response patterns associated with events in consciousness are rarely so easy to

identify. There are many factors, some of which have already been discussed, which influence

physiological responses; cognitive and affective processes are rarely the strongest influence. Thus, from

one point of view, the physiological data can be said to be "noisy," i.e., the signals of interest are buried

in other signals which are more or less unrelated. Brainwave signals, for example, may contain some

information about a person's state of consciousness, but they also are strongly influenced by sensory

inputs, body movements, maintenance functions of the body, etc. Analytical procedures for separating

the desired signals from the undesired noise are required for the detection and study of such

physiological response patterns.
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The simplest approach to this problem is averaging across many occasions. Schwartz (1976)

applied this technique in his study of patterns of facial muscle tension levels and covert emotion. He

recorded the envelope of EMG signals (electromyographic signals are closely related to muscle tension)

from four facial muscles: the frontalis (the muscle in the forehead which controls lifting of the

eyebrows, etc.), masseter (the jaw muscle), corrugator (a muscle which runs horizontally from eyebrow

to eyebrow, under the frontalis), and the depressor (a muscle around the lips and mouth). Schwartz

asked his subjects to imagine happiness, sadness, anger and a "typical day" in turn, after resting,

baseline EMG levels were recorded. Although his subjects did not visibly change facial expression

during this procedure, significant changes in average EMG levels were recorded.

EMG signals are made up of many brief impulses, and vary in intensity from moment to moment,

despite no apparent change in expression, cognition or emotion. These changes may be considered to be

noise for the purposes of identifying patterns associated with imagined emotions, and presumably vary

randomly with respect to imagery. Schwartz's (1976) technique involved averaging EMG levels over a

30 second period of sustained imagery of each type. In this way, many of the undesired short term

fluctuations in EMG level were averaged out, uncovering the significant differences in average EMG

level associated with each imagined emotion.

Schwartz's results were encouraging. He found distinctive EMG patterns associated with the four

imagined emotional states. It is interesting to note that the distinguishing features of these responses

were in corrugator and depressor EMG levels, and not in frontalis or masseter EMG. Frontalis levels

remained about the same in all states, suggesting another possible reason for the lack of correlation

between subjective reports of relaxation and frontalis relaxation training (Brown, 1977). It may be that

clinicians who have had success with "frontalis" EMG training for stress management were actually

attaching the sensing electrodes low enough on the forehead to train for corrugator relaxation. Schwartz

found corrugator relaxation to be typical of happy imagery, and excess corrugator tension was typical of
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sad imagery. High depressor EMG levels were typical of angry imagery. The "typical day" imagery

produced responses similar to, but weaker than, the happy imagery.`

Although a few physiological responses are constant enough for a simple averaging approach to be

of use, most responses are dynamic, constantly changing, and require more sophisticated techniques.

Clynes' (1973, 1976) work with small finger movements is a good example of such a dynamic process.

Clynes asked his subjects to imagine various emotions and express them through the movements of a

finger, pressing on a bar. For each trial, in which an imagined emotion was expressed, he recorded the

pattern of changing pressure on the bar, lasting about ten seconds.

The analytical problem for such data still involves separating the signal of interest, here a pattern of

pressure varying with time, from finger pressure variations unrelated to the imagined emotion. Clynes

collected many repeated responses from each subject and averaged them by use of a computer of

averaged transients (CAT). This technique for averaging dynamic signals is used widely, and deserves

description in detail.

Clynes recorded the names of various emotions on magnetic tape, at intervals. Each spoken

emotion name, such as joy, anger, grief or love, was followed by a series of randomly spaced neutral

signals, each sounding like a brief tap. Each tap was the signal for a finger response to be emitted.

Clynes divided the pressure measurement of response to each emotion into many short time intervals,

starting at the time of the signal from the tape recorder. The pressure during each time interval was

constant enough to be reduced to a single sample value. For a single imagined emotion, Clynes

collected a series of these samples at regular intervals following the signal from the tape recorder.

Clynes averaged each sample across many trials. In this way he produced an average set of

samples, an average pattern of pressure variations with time. This averaging process produced a

substantial improvement in signal-to-noise ratio. It may help to express it mathematically.

Call the first pressure sample in the first trial expressing an emotion P(1,1), the second sample of

the first trial P(1,2) and the kth sample of the first trial P(1,k). Call the first sample of the second trial
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P(2,1) and the first sample of the jth trial P(j,1). Call the first point of the average response pattern A(1),

the second A(2) and the nth A(n). Then when averaging over t trials

        A(n) = [P(1,n) + P(2,n) + ... + P(t,n)]/t

This averaging process can improve signal-to-noise ratio if the successive trials are time locked,

i.e., if the response in successive trials begins at or near the same sample number each time, because the

responses relevant to the signal will reinforce each other, while the random noise will average toward

zero. For perfectly time locked signals, t trials will produce an average signal with a signal-to-noise

ratio improvement equal to the square root of t (Cohen, 1974).

Clynes (1973, 1976) used this averaging process to construct average patterns or templates of

pressure response for a series of emotions. He found that anger, grief, love, sex, joy and no emotion

each had distinct response patterns which were similar across subjects. Love, for example, was

expressed as a gentle curve, a pressure varying slowly with time, while anger was expressed as a sharp,

brief impulse. It is interesting to note that he found these distinctive patterns to be similar for subjects

from widely varying cultures, including Americans, Mexicans, Japanese and Balinese, although there

were a few significant cultural differences. The Balinese had difficulty distinguishing anger from hate,

while the Japanese did not, according to Clynes (1973).

The same CAT technique has been used by other researchers to look for weak patterns of

physiological response. One widely used method is the study of evoked responses. In a typical

experiment, a light is flashed in the subject's eyes repeatedly, at random intervals. Each flash of the light

is considered to be a trial, and the EEG response to a number of flashes is averaged by CAT methods to

yield an average visual evoked response (VER) pattern. The resulting average response pattern looks a

little like a damped oscillation, if graphed with amplitude vs. time.

One researcher (Ertl, 1968a, 1968b, 1969, 1971, 1973) has reported that the period of time between

the second and third peaks of the average visual evoked response is directly related to "neural

efficiency" and IQ.
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The intensity of stimulus, e.g., the brightness of the flash of light, in an evoked response

experiment has an influence on the average evoked response pattern which is recorded. Buchsbaum and

Silverman (1968) and Blacker, Jones, Stone and Pfefferbaum (1968) found that the pattern of variation

of VER varied from subject to subject. They report that subjects who reduce the sizes of tactile

judgements of width, in a separate tactile perception task, tend to show a decrease in amplitude of VER

with increase of light intensity, while subjects who augment the sizes of tactile judgements tend to show

larger VER for brighter light flashes. The same researchers report that schizophrenics and subjects

under the influence of LSD show "reducing" response patterns, in which increasing light intensity

produces decreasing VER size.

Clynes (1968, 1973) experimented with a variation of the usual VER procedure. Instead of using a

simple flash of light, he flashed different patterns of lines and colors on a screen in front of his subjects.

He found identifiable EEG VER patterns for different colors, and distinct responses for random dots,

radial lines or polar coordinates.

John (1976) elaborated this procedure by studying VER to letters of the alphabet flashed on a

screen. He recorded EEG from several scalp areas, including the occipital, parietal and temporal lobes.

He found different VER patterns at all scalp locations for different letters of the alphabet, just as Clynes

found different VER patters for different line drawings. When John studied the VER patterns for the

same letter presented as two different shapes (e.g. lower case and capital letters), he still found different

VER patterns in the occipital region, but the VER responses in the other scalp areas were similar for

either shape.

John (1976) explained these results by pointing out that the occipital lobes of the cortex process

visual information and should produce different responses for different shapes, while the other lobes of

the cortex are involved in associational processes which derive meaning from the shapes, and the

meaning of the upper and lower case letters is similar.
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In a further elegant experiment, John (1976) found that a vertical line, which produces a consistent

occipital VER pattern, elicits VER patterns in other cortical areas which are significantly different when

the perceptual set is changed. Thus a vertical line seen as the digit "1" has a different meaning from the

same pattern seen as the letter "L."

Pinneo and Hall (1975) used the CAT technique in a series of experiments which go far toward

establishing the existence of useful correlations between physiological and psychological events. Their

studies focussed on the physiological correlates of covert speech (verbal thinking), with the goal of

testing the feasibility of communication from human to computer via EMG and EEG signals. Their

studies proceeded in several phases. In the initial phase, they studied EMG and EEG waveforms

correlated with overt speech (speaking aloud), and in the later phases the correlates of covert speech

were studied. Pinneo and Hall expected to find similar patterns for both overt and covert speech.

In both the overt and covert speech phases, they ran training trials, in which template patterns were

built up for each physiological measure and each word by having their subjects repeat each word, on

command, several times. The data from successive repetitions were averaged by CAT techniques.

Following a set of training trials were the recognition trials, in which a computer system attempted to

identify words spoken or thought on command, by comparing them with the template patterns built up

during the training phase.    

In the overt speech trials, using a 15 word test vocabulary, 74% of the 5,400 trials were correctly

classified using EMG responses alone, 63% were correctly classified by using EEG together with EMG

to classify, and 34% were correctly classified by EEG alone. The method used by Pinneo and Hall for

classification of responses, and for combining physiological measures for classification purposes was a

very simple root-mean-square (RMS) distance measure, and as can be seen from the results above, this

technique does not necessarily gain in accuracy if a combination of physiological measures are used for

identification purposes. It will be worthwhile to consider how their classification procedure worked.
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As in all CAT procedures, Pinneo and Hall recorded a collection of data samples for each trial. In

these experiments, seven seconds of data were collected for each trial, and that seven second collection

of data made up one epoch, or data block. There were seven channels of data recorded during each

epoch: two EMG measures, four EEG measures and a single voice recording channel.

In the training phase, data from each of the six nonvocal channels were averaged, sample by

sample, using the CAT technique, with a separate average template produced for each physiological

measure and each word. The voice channel was used by Pinneo and Hall to time justify their data. The

beginning of vocalization was detected in the voice recording, and all of the data were shifted forward

or backwards until the beginning of vocalization occurred at the same sample number in every trial,

thus ensuring perfect time lock for the averaging and the best possible improvement in signal-to-noise

ratio. Thus, if vocalization began a bit early on one trial, before time justification, the sample numbers

were adjusted upward to move the beginning of vocalization to the correct sample number.

A total of 255 samples made up a single epoch, but Pinneo and Hall had collected extra data points

before and after vocalization. Only about 100 data points, centered around vocalization, actually

contained useful data. Vocalization in one trial might begin at sample 112 and in another trial it might

start at 136. Pinneo and Hall time justified their data by renumbering samples so that vocalization

always began at sample 127. All of the useful information was then contained in samples 100 to 200, so

the templates for each word were built up from these 100 data points. Call the first sample in the

template for the first word T(100,1), the second sample of the first word T(101,1) and the last sample of

the template for the first word T(200,1). After time justification, the first useful sample of an unknown

word would be U(100), the second U(101) and so on.

In a recognition trial the RMS distance between the unknown word and each template was

calculated and the unknown word was classified on the basis of the closest template. The RMS distance
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between template n and the unknown word was calculated as the square root of the sum of the squares

of differences between successive samples, divided by the total number of samples:
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When several channels of physiological data were combined for classification purposes, Pinneo

and Hall simply put them end-to-end, creating a single new template with more samples. When all six

physiological channels were combined, a 600 sample template was created. Although this procedure for

combining physiological measures was simple, it did not produce improvement in overall classification

accuracy. More sophisticated techniques for approaching this problem will be discussed later.

Pinneo and Hall found that separate templates had to be produced for different subjects, i.e.,

different subjects had different patterns of physiological response associated with the pronunciation of

the same word. They found the greatest intersubject variation in the EEG data and the most similarity in

the EMG data. No particular EEG electrode placement was consistently found superior to any other

placement.

The covert speech trials were run in a similar manner, except that the words were not spoken aloud,

they were thought silently. A test vocabulary of five words was used. The results were disappointing

without classifications were not much more accurate than chance expectation. They time justified the

covert responses from physiological data, matching major features of the responses, and smoothed out

all high frequency components in the EEG waveforms. The results of this processing were dramatic, the

classification accuracy jumped from about 27% (compared to 34% for unsmoothed overt speech EEG

data) to 62% for all EEG channels combined.

Pinneo and Hall found the EEG patterns for words to be very similar in covert and overt speech,

though the patterns varied from subject to subject. Their findings may provides some experimental

support for the behaviorist notion that verbal thinking is simply covert speech (Skinner, 1974). 
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The techniques for analyzing dynamic physiological processes which have been discussed up to

this point are time-domain processes, they examine how the value of a measure changes from moment

to moment. Frequency domain analytical procedures are also very useful, and deserve some explanation

here. In frequency domain analysis, the signal to be analyzed is divided up into time segments called

epochs, and each epoch is separately analyzed. The signals usually analyzed by this technique are those

which vary rhythmically with time, such as EEG, and the frequency domain analysis focusses on the

rate or frequency of the rhythms. A typical signal is complex, and can not be meaningfully analyzed as

a single rhythmic frequency, so the usual procedure is to view it as the sum of several frequency

components. The utility of frequency domain analysis of EEG is great in many applications because the

most obvious and easily identified features of the brainwave signal are frequency components such as

alpha waves, beta waves, etc.

The result of a frequency domain analysis is usually a spectral density function, which expresses

the relative amount of power present at each frequency in the spectrum, or range of measured

frequencies. A spectral peak at some frequency indicates that the signal contains a strong component at

that frequency. One of the popular techniques for frequency domain analysis of signals is the Fourier

transform. A commonly used implementation of the technique on modern computers is the fast Fourier

transform, or FFT (Cooley, Lewis & Welch, 1977).

The use of the FFT requires making some assumptions about brainwaves which are not always

justified. The main assumption is that FFT requires the waveform under analysis to be stationary, i.e.,

unchanging throughout time, except for rhythmic repetitions. Brainwaves are normally constantly

changing, so this is not an accurate assumption. The errors from it become more serious as longer

epochs are analyzed. Other errors from FFT become greater as epoch length shortens, so it is at best a

compromise technique, but still a popular and useful one (Zetterberg, 1973).

Pinneo and Hall (1975) tried FFT analysis of their EEG and EMG data from overt speech trials, but

the results were disappointing, so they did not pursue this line of research further.
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Don (1975, 1978) used FFT analysis of a single channel of EEG in his research. He was working

with graduate students in psychology who were practicing an introspective technique, "focusing."

Focusing is similar to many Buddhist meditations, and is a quieting process designed to encourage

insight. It involves stopping the internal dialogue while attending to bodily feelings. The students were

trained in recognition of "felt shifts" which are precursors to insight.

Don's subjects practiced focusing while their brainwaves were recorded. They gave ongoing verbal

reports of events in consciousness which were recorded on an audio tape recorder synchronized with the

EEG recorder. Don analyzed the tape recorded EEG using FFT and very short epochs, 2.56 seconds

long, so that a typical 45 minute session was broken up into 1024 epochs.

Don's (1975) hypothesis was that the EEG epochs recorded during insight experiences would be

identifiable by FFT spectral patterns with peaks in the alpha frequency band and a corresponding

subharmonic peak in theta. It is important to note that Don was not searching to learn what, if any,

pattern of brainwave response correlated with insight. Instead, he set out to test a specific hypothetical

pattern against his experimental data, a procedure which allows a simple pattern recognition approach.

Don's hypothesis was based on earlier research (Green, Green & Walters, 1970; Morrell, 1966) in

which simultaneous alpha and theta bursts were observed in raw EEG data.

Don's computer program for analyzing EEG data used a three step process in searching for epochs

with the desired EEG pattern. First, each epoch was fast Fourier transformed. Then the alpha peaks in

each spectrum, and the subharmonic peaks in theta and delta were identified in every epoch, and Z

transformed across every epoch in each subject's data. The Z transforming process converted the

absolute spectral density scores into relative scores which could be easily compared across subjects,

despite intersubject variations in brainwave amplitude. Don was not concerned with the absolute size of

any spectral peak, he simply wanted to identify peaks which were unusually large or small for each

subject.
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The third step of Don's analysis was pattern recognition. He rejected epochs with delta or beta

peaks significantly above average, because a pilot study of his showed that such epochs might fit his

pattern otherwise but would not match subjective reports of insight experiences. He then looked for

large alpha peaks, together with successively smaller theta and delta peaks, and epochs with this pattern

were selected as candidates for insight experiences. Although the computer picked more epochs as

insight experiences than Don's subjects reported, the epochs which the computer picked as best fitting

Don's pattern were in almost every case the same epochs identified by subjective reports of insight.

Thus Don successfully demonstrated that a subtle event in consciousness could be recognized by EEG

pattern analysis. He suggested (Don, 1975) that EEG biofeedback training might be done to enhance

this pattern in the hope that more insight experiences would result.

Don's (1975, 1978) research indicates that pattern analysis in the EEG frequency domain can be

useful in the recognition of events in consciousness. But it does not shed much light on pattern

identification. A practical technique is needed for searching for and identifying interesting patterns of

physiological response. Powerful pattern identification techniques are likely to make use of two related

multivariate statistical techniques: principal components analysis and discriminant analysis.

Both of these techniques involve breaking the flow of data up into time segments, or epochs, each

of which is independently analyzed. The results of analysis of an epoch typically consist of a collection

of data, e.g., a set of FFT spectral density values for different frequency ranges, and each of these data

may be considered as a separate variable. A useful way of thinking about the data from an epoch is as a

single point in a mathematical multidimensional hyperspace (a hyperspace has more than three

dimensions). The set of epochs of data resulting from an experiment can then be considered as a set of

points in hyperspace. Similar physiological states would produce points close to each other in this

space, and different physiological states would correspond to clusters of points separated from each

other. Such a space could contain dimensions corresponding to more than just EEG data from a single

electrode pair, it could also include other EEG data, EMG, skin temperature, GSR, BSR and other
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physiological data. Stoyva and Kamiya (1968) and Kamiya (1974) suggested that such a

multidimensional approach to psychophysiology might lead to insights in the study of consciousness.

It is difficult to visualize a many dimensional hyperspace, and as the number of dimensions

increases, it becomes an unwieldy task even for high speed computers. For this reason, special

mathematical techniques have been developed for extracting most of the useful information from a high

dimensional data set, while collapsing it to a smaller and more manageable number of dimensions.

Principal components analysis is a technique for constructing a new set of axes (variables) which

are orthogonal (perpendicular) and aligned along the directions of maximum variance (scatter of data

points in hyperspace). The first principal component is aligned in the direction of maximum variance,

the second component is aligned in the direction, orthogonal to the first, which maximizes the

remaining variance, the third principal component is orthogonal to the first two and aligned in the

direction which  maximizes the remaining variance, etc. It is usually possible to construct a set of

principal components with fewer dimensions than the original set of variables which accounts for

almost all of the variance in the original data (Morrison, 1967). This collapse in dimensionality can

make further calculations, such as pattern identification or recognition, easier.

The usual method for calculating principal components involves the use of matrix algebra to create

the principal components as linear combinations of the original variables. This is done by analysis of

the eigenvalues (roots) of the covariance matrix of the original data set (Morrison, 1967).

Discriminant analysis is a related technique which operates on several groups of data points in

hyperspace, corresponding to groups of epochs of data from different experimental conditions or states

of consciousness. Consider a simple experiment in which two states of consciousness are studied. Two

sets of physiological data are collected, one for each state of consciousness. The experimenter might

hope that these two states of consciousness correspond to different physiological states. This would

imply two separate swarms or groups of data points in hyperspace. The goal of discriminant analysis is

to create a new set of axes in hyperspace which maximally separate the different experimental groups,



32

while remaining orthogonal to each other. It is usually possible to achieve a substantial collapse in

dimensionality with this technique, just as with principal components analysis, so that a small set of

new variables, made up of linear combinations of the old variables, contains most of the discriminating

power available. For two groups of data points, a single line in hyperspace will be the result, for three

groups a hyperplane is the usual result and so on (Gnanadesikan, 1977).

The results of this type of discriminant analysis are called discriminant coordinates or

CRIMCOORDS. They are calculated by eigenanalysis of the matrix product of the inverse of the

within-groups covariance matrix and the between-groups covariance matrix (Gnanadesikan, 1977).

A closely related type of discriminant analysis can be used to create polynomial combinations of

the original variables, which can be used to calculate the posterior probability that an unknown data

point belongs to a particular group or cluster of points. Jennrich (1977) calls these equations group

classification functions. The group classification function is a type of discriminant equation  likely to be

useful in physiological pattern recognition systems.

Discriminant analysis and cluster analysis are related techniques for classification. Unlike

discriminant analysis, cluster analysis does not depend on a training data set with groups of data points

of known group membership. Cluster analysis is a process by which groupings of points in hyperspace

are discovered and identified.

Larsen, Ruspini, McNew, Walter and Adey (1973) studied the relative effectiveness of

discriminant analysis, cluster analysis and classification of EEG sleep stages by human experts. Their

experimental data consisted of EEG recordings from a single electrode pair on each of two

chimpanzees.

For the purposes of this dissertation, the most interesting feature of the Larsen, et al. (1973) study

is the use of principal components analysis and discriminant analysis to combine many physiological

data and create a new, smaller set of variables with more discriminating power than any of the old

variables.
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Human EEG experts examined the raw EEG data, recorded on chart paper, and classified 100

epochs of the data into five sleep categories: drowsy, light, medium, deep and REM (rapid eye

movement, and hence probably dreaming), based on a classification system developed by McNew,

Kado, Howe, Zweizig and Adey (1968). About 20 epochs were classified in each of the five stages.

These epochs were used as a training data set for later discriminant analysis. A second set of 100 epochs

was classified by the human experts, for use as a test data set, to check the accuracy of classifications

made after discriminant or cluster analysis.

Larsen, et al. (1973) used principal components analysis to reduce their 32 dimensional brainwave

data to five new dimensions. Using these five new variables, a new data matrix was constructed for

each of the five sleep stages from the 100 data points in the training data. Discriminant analysis was

then performed, using the five dimensional training data, resulting in a set of discriminant coordinates.

The discriminant coordinates were used to plot and classify the second 100 data points. About 70%

of the data points were correctly classified, with those that were misclassified lying rather far from any

of the groups. This is a fairly high success rate, though it would be more impressive if the states of

consciousness which the experiment sought to identify had been defined by some non-brainwave

measure. Defining grouping by visual EEG analysis must increase the likelihood of success at sorting

EEG signals into such groups automatically. Larsen, et al. (1973) suggested that the 30% of the data

points which the computer failed to correctly classify were probably classified on the basis of

contextual data when the human experts examined the chart records. The discriminant analysis

considered each epoch as an independent event and did not take context into consideration.

Cluster analysis revealed two main clusters in the data points, roughly corresponding to

synchronized and desynchronized EEG states. Larsen, et al. (1973) were disappointed in this result;

they had hoped to find clusters roughly corresponding to the groupings identified by human analysts. 
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Problems to be solved in physiological data analysis

The studies reported above were successful in finding patterns of physiological response

correlating with events in consciousness.  They provide some encouragement for the belief that such

correlates exist. Of course, there are studies in which such correlates were not found, e.g., the studies

which unsuccessfully searched for the physiological correlates of hypnosis (Diamant, Dufek, Hoskovec,

Kristof, Pekarek, Roth, & Velek, 1960; Fujisawa, Koga, & Toyoda, 1959). 

But the absence of evidence of a correlation is not evidence of absence. It can simply be evidence

that the analytical techniques in use are not adequate to find the correlation. 

One basic problem is the identification of the states of consciousness by some independent means,

apart from the physiological measures under study. Larsen, et al. Sidestepped this issue and defined

their states physiologically. Most other investigators either rely on subjective reports, as did Don

(1975), or on evoked responses, as did Pinneo and Hall (1975).

Another equally troublesome problem is the amorphous nature of events in consciousness. They

vary in duration and intensity as well as in quality. It is difficult to define precisely the beginning or end

of an event of interest and it probably is not possible to evoke events of many types, such as emotions,

with predictable latency.

Time domain data analysis procedures, such as the CAT technique used by Pinneo and Hall (1975)

depend on split second time justification, and depend on either predictable latency or an independent

method of identifying the beginning of event of interest (e.g., the beginning of vocalization). This

makes time domain procedures poor candidates for research in the correlates of many affective and

cognitive states of interest. Frequency domain techniques are somewhat more promising because they

are considerably less sensitive to precise timing. Don (1975), for example, succeeded in identifying a

rather subtle event in consciousness despite imprecise timing information from his subject's reports.
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If a pattern of physiological response correlated with an event of interest is identified, then the

problem of analyzing ongoing (real-time) physiological data and comparing them with one or more

stored patterns becomes important. This data analysis must be carried out rapidly enough so that it is

completed before the next epoch is over, or else the system will fail to keep pace with the incoming

data.

Most pattern detection schemes involve lengthy calculations which consume considerable

computer time. These techniques work well enough when there is time available to analyze tape

recorded data at leisure, off-line (on-line or real time analysis is done as data is collected, off-line

analysis is done later, from recorded data). A practical biofeedback system for learning control of

events in consciousness will have to use real-time, on-line analytical procedures. Larsen, et al. (1975),

Don (1975) and Pinneo and Hall (1975) all used off-line analysis. Pinneo and Hall did attempt a series

of on-line trials, but obtained success rates considerably lower than in off-line trials.

FFT, the most popular frequency domain analytical method, has some pitfalls of its own. It

consumes considerable computer time, despite improvements in the technique which maximize its

speed (Cooley, Lewis & Welch, 1977). It depends on the use of a predetermined, fixed epoch length,

which is not easily adapted  to the ephemeral nature of events in consciousness, and it involves making

assumptions about the statistical properties of brainwaves which may not always be justified.
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Pattern biofeedback

If all of the problems of physiological pattern detection and identification are solved, the next step

in using them for teaching voluntary control of consciousness will be to do pattern biofeedback training.

It seems prudent to examine the literature on previous attempts at training for control of patterns of

physiological response, both to see if it can be done, and to learn if such training is likely to lead to the

desired voluntary control over events in consciousness.

Green and Green (1977) trained subjects in forearm muscle relaxation (with EMG training),

handwarming (with skin temperature training) and eyes-open occipital alpha production (EEG training).

They then asked their subjects to attempt to control all three physiological processes at the same time,

providing visual feedback with three vertical bars of light, one for each modality. Although this "triple

training" task was reported as more difficult by the subjects, several were able to demonstrate control

over all three responses. It may be that part of the difficulty of the task arose from the three feedback

signals; a single combined feedback signal might have been easier to learn from.

Peper (1972) found that brainwave control at two independent scalp locations could be learned

through biofeedback training, and he suggested that such training might be useful in the mapping and

study of states of consciousness. Weber and Fehmi (1974) went on to demonstrate EEG training at five

scalp locations.

Schwartz (1976) demonstrated combined training of pairs of responses. Heart rate and blood

pressure were independently raised and lowered in one experiment, while EEG alpha and heart rate

were independently controlled in another experiment. Suter, Francoli, Johnson and Smith (1977)

demonstrated combined independent training of EEG alpha and skin conductance, and Rugh (1977)

demonstrated EMG training of two independent muscle groups at the same time.
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Webb (1977) used multiple channel EMG feedback in an innovative training procedure which

taught blind subjects how to express their emotions with appropriate facial expressions. Three muscle

groups were monitored: the zygomaticus (a muscle near the corners of the mouth), corrugator and

frontalis. The zygomaticus was used in smiling to express happiness, the corrugator in frowning to

express anger and the frontalis was used in raising eyebrows to express surprise. Each muscle

controlled a feedback tone, and the blind subjects learned to control all three tones simultaneously.

Webb's subjects did learn improved control over facial expression through this feedback training,

though it is interesting to note that local training effects cropped up. All of her subjects had difficulty in

controlling corrugator tension to express anger without tensing several other unmonitored muscles, thus

producing an undesired facial expression. The use of more EMG channels would probably have reduced

this problem.

There are two studies of biofeedback systematic desensitization of drug addicts which are relevant

to both the pattern biofeedack question and to the question of biofeedback and volition. Systematic

desensitization (Wolpe, 1973) is usually used for treating phobias. The procedure involves the

construction of a hierarchy of images which range from relaxing to very threatening. The patient is

taught a relaxation procedure, and then is asked to begin imagining items in the hierarchy, beginning

with the most relaxing. As soon as anxiety is noted, the procedure is stopped, and a more relaxing

image is imagined until relaxation is re-established. Then the steps up the hierarchy are resumed. By

this process, the patient eventually learns to imagine previously threatening images while remaining

relaxed. The theoretical basis for this procedure is the idea of reciprocal inhibition, which states that it is

very difficult to be aroused or anxious and relaxed at the same time. The presence of one state inhibits

the other.

Lebow and Allen (1974), working at Lompoc Federal Prison in a drug rehabilitation program,

adapted this procedure for use with drug addicts. Their idea was to desensitize the arousal stimulated by

drug-related images by a procedure similar to that used for phobias. A hierarchy of images was
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assembled on color transparencies (slides), ranging from neutral to slides of heroin purchase and use.

They used galvanic skin response (GSR) to measure arousal, and constructed an automatic slide

projector controller which could advance or reverse the slides on command from a timer and from the

GSR instrument.

The projector would advance from one slide to the next at regular intervals, as long as no GSR

response was detected, but would reverse to earlier slides if a GSR response was elicited. Thus it was

not possible for a subject to view the entire set of slides unless each of them could be viewed without

GSR response.

Lebow and Allen's patients were men who had committed crimes such as bank robbery, but who

had pled that they had lost control of their volition due to drug addiction, and that they were not

responsible for their behavior. The goal of the treatment program was to restore volition to these men,

to teach them to modify their responses to drug-related stimuli so that they were no longer

uncontrollable. 

Lebow and Allen found that non-addicts had little difficulty with this task, but that heroin addicts

needed extensive training to succeed at it. They were encouraged by this result, and by subjective

reports from their patients, who said that their previously uncontrollable desire for drugs was

diminished and controllable. But they found that some addicts did not experience diminished desire for

heroin, and that these men exhibited a sharp drop in fingertip temperature when watching the slide show

while suppressing GSR responses. Lebow and Allen hypothesized that these men had learned to

suppress GSR responses without relaxing, and they interpreted the drop in skin temperature as a stress

response associated with this process.

In my work (Scully, 1977) at Gladman Hospital, in Oakland, California, I experimented with a

pattern biofeedback system based on Lebow and Allen's observations. The system consisted of a slide

projector controlled by skin temperature and GSR responses. Slides advanced at regular intervals until a

GSR response or a skin temperature decrease was noted. A GSR response caused the projector to back
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up three slides and stop until the response stopped. A skin temperature decrease stopped the projector

until the temperature increased again. Although this system was only tested with a few addicts in a pilot

study, the results were promising. The dual modality system was more sensitive to mood changes than a

single modality. Addicts reported that  this improved sensitivity was helpful in their training.

The studies described above provide evidence that pattern biofeedback is possible, at least for

simple patterns. There is less evidence available regarding the effectiveness of such training in teaching

voluntary control over specific events in consciousness.

The brainwave studies in which alpha enhancement training was attempted in an effort to achieve a

meditative state of consciousness are probably the best examples of work in this area. The physiological

monitoring studies of some types of meditators revealed phase coherent alpha waves which spread from

the back to the front of the scalp in both hemispheres (Banquet, 1972). Phase coherence means a stable

phase relationship between waves from different scalp areas (i.e., the waves from different areas were

of the same frequency). Some early reports of occipital alpha enhancement biofeedback training were

similar to the subjective reports of meditators (Kamiya, 1969), i.e., inner calm and peace. But later

experiments in alpha training led to the controversy discussed earlier; some investigators did not obtain

subjective reports similar to those of meditators.

Two channel EEG training for interhemispheric phase synchronous occipital alpha has been done

by several investigators (Mayo,  Targ, & Hurt, 1975; Mikuriya, 1977). Successful subjects report

profound feelings of peacefulness during periods of phase synchronization (synchronization means

maintaining near zero phase angle between waves from different scalp areas).

The evidence for an improvement in the correlation between peaceful states of consciousness and

bilateral alpha synchronization training, compared to single channel training, is still inconclusive, but

does point in the desired direction. On intuitive grounds, it seems reasonable that training for a more

precisely defined physiological state may lead to less variation in subjective reports.
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Neurophysiology, Transactional Analysis and the Ego State Inventory

Differences in emotional tone are among the most distinctive features of the identity states selected

for study in this research. These states will be discussed in more detail later, but first a brief discussion

of the neurophysiology of emotions is in order.

The neurophysiology of emotion

There are many possible physiological measures, from different parts of the nervous system, which

could be analyzed in a search for the correlates of emotion. The nervous system is divided into three

major sections, somatic, autonomic and central. The nerves to and from the sensory and motor organs

make up the somatic nervous system. Schwartz's (1976) facial EMG data are the best example of

emotion-somatic correlation.

The autonomic nervous system is in turn divided into the sympathetic and parasympathetic

divisions. The autonomic nervous system responds strongly to many emotions, but it may be difficult to

identify the specific emotion from autonomic data, which seems to vary mainly along an arousal-

relaxation dimension. The difference between sympathetic and parasympathetic arousal may in some

cases indicate an emotional polarity. Skin temperature and electrodermal phenomena are primarily

autonomic nervous system measures. GSR can be triggered by the orienting response or almost any

arousing stimulus, regardless of emotional type or polarity  (Darrow, 1927), while skin temperature

changes are somewhat less sensitive to orienting and more sensitive to the polarity of arousal, with

negative emotions (e.g., fear and anger) reducing temperature, and positive emotions or relaxation

allowing it to rise.

The central nervous system is more likely to be a source of physiological data which can make fine

distinctions among emotional states. This system can be divided into three main sections, the hindbrain

(spinal cord, medulla and pons), midbrain and forebrain. The first two parts have been called the neural
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chassis (Mclean, 1973), and can manage the basic tasks of reproduction and self-preservation. These

parts make up almost the entire nervous system of a fish or amphibian. Reptiles have some forebrain in

addition to the neural chassis, and this first layer of the forebrain has been called the R complex

(MacLean, 1973).

Humans have two additional layers of forebrain, the limbic system and the neocortex. It is these

two layers which contain the higher mental processes. The limbic system has been called the emotional

brain and is often considered to be the link between the emotions and the body (Green & Green, 1977;

MacLean, 1973). The limbic system controls much of the autonomic nervous system. This control is

accomplished through the hypothalamus, thalamus and pituitary gland, which are parts of the forebrain.

Electrical or chemical stimulation of specific tiny portions of the thalamus or hypothalamus can trigger

strong and specific emotional responses (Wooldridge, 1963).

The cerebral cortex is the topmost layer of the brain, and is the part of the nervous system which is

most highly developed in human beings. It is cortical development which distinguishes humans from

the lower animals, and the cortex is clearly the seat of most higher mental abilities. The cortex and

limbic system, including the thalamus, are, of course, intimately interconnected. Because the cortex is

closest to the scalp, most of the electrical activity recorded from the scalp (EEG) is cortical in origin,

even though the activity may be a response to deeper, especially thalamic, activity.

Can scalp EEG yield information about emotions? This is one of the questions which the

experimental portion of this dissertation addresses. There is experimental evidence that the cortex

exchanges signals with the limbic system and midbrain, and that these signals are relevant to emotions.

The work of Penfield, a neurosurgeon, provides some excellent evidence.

Penfield (1952, 1959) operated on patients with severe epileptic seizures. He removed a portion of

the skull, under local anesthetic, and electrically stimulated the exposed cortex, to locate the diseased

portion so that it could be surgically removed. He obtained subjective reports from his patients of their

experience during this painless electrical stimulation of the brain. Surprisingly, he found that such
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stimulation, especially in the temporal region, often caused his patients to relive a vivid past experience,

with sights, sounds and emotions. Penfield (1952) reported:

Under the compelling influence of the stimulating electrode, a familiar experience
appears in a patient's consciousness whether he desires to focus his attention upon it or not.
A song goes through his mind, probably as he heard it on a certain occasion; he finds
himself a part of a specific situation, which progresses and evolves just as in the original
situation. It is, to him, the act of a familiar play, and he is himself both an actor and the
audience. 

 The subject feels again the emotion which the situation originally produced in him,
and he is aware of the same interpretations, true or false, which he himself gave to the
experience in the first place. Thus, evoked recollection is not the exact photographic or
phonographic reproduction of past scenes and events. It is reproduction of what the patient
saw and heard and felt and understood. (p.183)

Penfield's report indicates the existence of at least a one-way connection from cortex to emotion.

There are other data which provide some evidence of an emotion to cortex connection.

Walter (1963) reports that young children exhibit more four to seven Hertz brainwave activity than

adults. These signals were first observed as a distinct pattern in studies of the thalamus, and came to be

called theta waves. Theta scalp EEG can be elicited in many children by frustration and other emotions,

according to Walter. With suitable emotional stimulation, Walter succeeded in eliciting emotion-related

theta from normal adults. He reported that ill-tempered adults produce more theta than even-tempered

subjects.

EEG signals in the four to eight Hertz range are also associated with other events in consciousness.

Drowsiness often elicits theta, for example. Thus, it seems that the task of relating brainwaves to

emotional events will not be an easy one. The electrical activity which can be recorded from the scalp is

the sum of signals from many sources; some of the signals have to do with sensory data, some have to

do with the maintenance functions of the body and some seem related to events in consciousness. The

use of pattern recognition techniques may help to reveal the patterns of interest, which are buried in

unrelated "noise."



43

Transactional analysis

One of the difficulties in studying identity states is the objective identification of them.

Physiological pattern recognition techniques may soon help with this task, but before that stage is

reached, another means is required for judging the presence or absence of an identity state, so that the

physiological pattern associated with it can be identified, if it exists.

The identity states chosen for study in this research were selected because they are defined

behaviorally and can be identified by an objective observer. They are not necessarily the most useful or

interesting states for study, rather they are simple to identify. These states are functional egostates as

defined by transactional analysis (Berne, 1961; Dusay, 1977a, 1977b).

Transactional analysis (TA) is a theory of personality and a school of psychotherapy founded by

Eric Berne (1961), and based in part on Wilder Penfield's (1952) work. Berne observed that people

sometimes act as if they were small children, at other times they act as adults, and at still other times,

they behave as parents, critical or nurturing. Berne (1961) called these different personality fragments

"ego states" and said:

An ego state may be described phenomenologically as a coherent system of feelings
related to a given subject, and operationally as a set of coherent behavior patterns; or
pragmatically, as a system of feelings which motivates a related set of behavior patterns.
Penfield has demonstrated that in epileptic subjects memories are retained in their natural
form as ego states. By direct electrical stimulation of the bared temporal cortex of either
side, he was able to evoke these phenomena. (p.xvii)

Berne's structural theory defined three types of ego states, Parent, Adult and Child, and identified

behavioral characteristics typical of each. The Parent is nurturing or critical, and feeds, comforts, limits

or prohibits. The Adult computes information, it is objective, businesslike and organized. The Child

may rebel with fighting and defiance, or be compliant and adaptive, or it may be spontaneous,

imaginative and natural.
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Dusay (1977a, 1977b) continued the development of this theory after Berne's death in 1970, and

evolved a theory in which five "functional egostates" are defined by observable behaviors. He began

using egograms, charts of the relative strength of each of the five functional egostates, in therapy and

found that trained observers agreed in identifying egostates and constructing egograms. He listed the

five states as: Critical Parent, Nurturing Parent, Adult, Free Child and Adapted Child.

The theraputic aspects of TA are not relevant to the subject of this dissertation. It is Berne's theory

of personality and behavior which is of interest here.

The overt manifestations of social intercourse are called transactions, and Berne analyzed these as

interactions among the participant's ego states. He also analyzed repeating patterns of transactions,

which frequently occur, as pastimes, psychological games, etc. Identification of the physiological

correlates of activities such as these would open up interesting possibilities for biofeedback training. I

expect to eventually experiment in this area, perhaps using psychodrama to evoke the desired behavior

pattern, while physiological data is collected and analyzed. This dissertation concerns itself with a

simpler study in which egostates are operationally defined by subjects' responses to a test.

The Ego State Inventory

McCarley (1974) developed a test, the Ego State Inventory, which is designed to evoke and

identify functional egostates and construct egograms. The test consists of 52 cartoons. Each cartoon

depicts two people interacting in a situation, with the first person supplying an Adult stimulus and the

second person having five possible responses. McCarley designed the test as a paper and pencil

multiple choice test, in which the subject is asked to imagine what response the second person would

make. The five responses correspond to the following states (McCarley, 1974):



45

    1. The Punative Parent (PP) is a subdivision of the Parent ego state and contains a
huge collection of   "no's," "don'ts" and admonitions. This is the center of the rigidly
internalized data which comes from authority. This kind of Parent is seen as non-rational,
prejudiced, arbitrary and usually prohibitive. 

    2. The Nurturing Parent (NP), which has sometimes been equated with the "Good
Parent," is often seen in supportive or sympathizing behavior.

    3. The Adult (A) is a data processing computer in the individual that estimates
probabilities about reality which are essential for him to interact effectively with his
environment. Old data is [sic] checked out in the light of new information and then updated
or discarded. It is the part of the individual which calculates solutions to problems.

    4. The Rebellious Child (RC) is the impulsive, assertive and self-indulgent part of
the personality. It is expressed as a resentment of authority and a lack of concern for the
rights of others.

    5. The Adaptive Child (AC) is formed by the influence of parental demands.
Compliant and withdrawal behaviors are common. (p.3)

McCarley's five egostates are different from Dusay's in one critical area. McCarley substituted the

Rebellious Child for Dusay's Free Child. This is an incongruity in his test from a TA point of view, but

it does not seriously impair its usefulness as a means of evoking and identifying identity states in a

search for their physiological correlates.

McCarley administered his test to several groups of subjects. He found, as expected, that Roman

Catholic nuns scored very high on Nurturing Parent, computer programmers scored high on Adult, and

juvenile delinquents scored highest on Rebellious Child. He found test-retest correlation coefficients

ranging from .47 for the Rebellious Child state to .73 for the Punitive Parent egostate.

Slides (transparencies) of McCarley's cartoons were made for use in the experiment described in

chapter 2. The cartoons are reprinted in Appendix A. Presentation of these slides to the subjects in this

study was controlled by a computer which also collected and analyzed physiological data.

Hardware Development
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Consider for a few moments what an ideal biofeedback system might be like. It should be

inexpensive and portable. It should be adaptable to detecting and training any desired pattern of

physiological response, and it should be capable of providing feedback in many modes. The power and

flexibility of computers suggests that the ideal biofeedback system should be computerized.

This dissertation describes the first few steps toward the development of such a system, together

with a study which tests the effectiveness of the system in identifying patterns of physiological

response. The study also tests the hypothesis that identifiable patterns of physiological response exist,

which are associated with specific identity states.  

Advances in microelectronics in the last generation have produced a series of breakthroughs in

computer technology. Computer systems which once filled vast rooms and cost millions of dollars have

shrunk to breadbox size and cost about a thousand dollars. 

This new technology makes it possible to build a portable computer system for collecting and

analyzing physiological data using large scale integrated circuits. Large scale integrated circuits are

electronic devices a few centimeters long which contain thousands of active elements, such as

transistors, each of which can perform amplifying or logical operations. One type of large scale

integrated circuit is the microprocessor chip. Integrated circuits are commonly called chips because they

are fabricated from thin slices or chips of silicon. A microprocessor chip such as the Intel Corporation's

8080A can perform arithmetic and logical operations at high speed, under the control of a program, a

set of instructions stored in external program memory. Such chips now cost about $25.

A computer system built around a microprocessor chip is usually arranged as a group of printed

circuit boards (or cards as they are often called) which plug into a common mother board. The mother

board interconnects the individual cards with a pattern of conductive lines which are collectively called

a bus. Cards which plug into the bus may include a central processing unit  where the microprocessor

chip resides, memory cards where instructions and data are stored, and interface cards which make it

possible for the computer to exchange data with the outside world through peripheral devices (e.g.,
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physiological data collection equipment, a keyboard, printer or cathode ray tube and a magnetic tape

recorder for external data storage).

Data are communicated and stored in binary form, with 1's and 0's represented by voltages which

are either high or low. A single binary digit is a bit, while a group of eight binary bits is called a byte. A

byte of data might represent an alphanumeric character or a number ranging from zero to 255. Data

expressed in binary numbers are called digital data, and the process of converting data from

physiological measurements into binary form is known as digitizing.

The low cost of microelectronic components has led to the development of inexpensive computer

systems for educational and personal use. Several companies, including MITS, IMS Associates and

Polymorphic Systems Incorporated, have been marketing micro computer systems designed around the

Intel 8080A chip. These systems share a common bus design in which a mother board with 100 pin

sockets is used to interconnect circuit cards, and circuit cards made by different manufacturers can be

used in the same computer system by plugging them into the standard "S-100 bus." The bus provides

power supply voltages to operate the plug-in cards, and has specific interconnections assigned to data,

address and control signal exchange among the cards.

An 8080A microcomputer system was designed and built for this research, beginning in 1974.

Although the original prototype system did not use the S-100 bus, because its construction was begun

before the S-100 bus became popular, the system has since been redesigned with S-100 bus

architecture. The unique physiological data interface cards designed for this study are therefore

compatible with thousands of existing computer systems.

Before a computer can be used to analyze physiological data, the data have to be collected from the

human body, amplified, filtered, digitized and communicated to the computer. Most computer systems

are powered from the 110 volt line, and consideration must be given to electrical shock protection for

subjects. If EEG and EMG signals are to be monitored, these weak signals may be buried in 60 Hz

power line interference unless the subject is grounded, shielded or unless some isolation is provided.
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The system for this research was designed with all physiological monitoring circuitry powered

from a single rechargable battery. DC/DC converters were used to produce the assorted power supply

voltages required. All data going to the computer were optically isolated. An optical isolator converts an

electrical signal into a beam of light whose brightness varies as the signal varies. This light shines onto

a phototransistor which converts the optical signal back into an electrical signal.

The system was designed to monitor skin temperature, skin resistance (GSR/BSR), muscle tension

(EMG) and two channels of brainwaves (EEG).

Non-EEG data collection techniques

Skin temperature was measured with a thermistor probe. A thermistor is a resistor with a negative

temperature coefficient. Its resistance decreases with increasing temperature. The probe selected

(Yellow Springs Instrument #44007) was chosen for its very low mass. The speed with which a

thermistor can respond to temperature changes increases with decreasing mass due to decreased thermal

inertia. A bridge circuit, balanced with a ten turn helipot, and an amplifier were used to convert

temperature changes into voltage changes.

Even with a low mass thermistor probe, the skin temperature signal is a slowly changing voltage.

Optical isolators exhibit some drift in transmission gain due to aging and temperature changes, and a

simple optical isolator is unsuitable for isolating DC or slowly changing signals because this drift will

introduce errors. One solution to this problem is to convert the DC or slowly changing voltage into an

AC (or oscillating) signal of high enough frequency to avoid drift problems.

A voltage controlled oscillator (VCO) module was designed to handle this task. The module

accepts an input voltage and converts it into an output whose frequency is directly proportional to the

input voltage with a linearity error of 0.1%. For skin temperature, the VCO was adjusted to accept an

input voltage ranging from -5 to +5 volts with output frequencies ranging from 2 kHz to 48 kHz (kHz is
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an abbreviation for kiloHertz, or thousands of cycles per second). These correspond to temperatures

ranging from five degrees Celsius below baseline to five degrees above the baseline temperature.

The output from the VCO circuit was optically isolated and then fed to a 12 bit binary counter.

Such a counter can count up to 4095 before it overflows. This counter was allowed to count the VCO

output for 1/12 second, and the resulting total was then automatically transferred to a buffer latch

(memory) so that it would be available for the computer to pick up. This total number of counts ranged

from 200 to nearly 4000 for the ten degree Celsius temperature range covered by the system, and

temperature changes as small as 1/100 of a degree Celsius could be resolved.

The advantages of this system of VCO, optical isolator and counter are that the problems of drift in

the optical isolator and of digitizing the data for the computer are both solved at the same time. The

same scheme was used to handle all of the other slowly changing physiological data. A fringe benefit of

this approach to digitizing is that 1/12 second averages are automatically generated by the system, thus

smoothing any rapid fluctuations in the data.

Skin resistance was measured by the constant current method, by putting the subject into the

feedback loop of an operational amplifier, with a sensing current of six microamps, using 13 mm (1/2

inch) diameter silver electrodes held in place with velcro elastic fingerbands. Basal skin resistance

(BSR) was measured as a voltage directly proportional to skin resistance. This signal was fed to a VCO

whose output range was zero to 36 kHz, giving a range of zero to 3000 counts per 1/12 second,

corresponding to a range from zero to 3000 kohms. An optical isolator was used between the VCO and

the counter.

An analog logarithmic amplifier was used to create a voltage proportional to log BSR. This signal

was differentiated with a time constant of two seconds to produce a galvanic skin response (GSR)

signal proportional to the rate of change of log BSR. The  GSR signal, ranging from -5 to +5 volts, fed

another VCO which in turn was optically isolated and counted by another 12 bit counter. Zero GSR

(constant skin resistance) produced about 2000 counts per 1/12 second, an increasing skin resistance
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lowered this count and a GSR response (decreasing skin resistance) raised it. A step change in

resistance  100 kohms from 115 kohms changed the count from 2000 to 4000. The resolution of the

GSR data was 130 counts per kohm of step resistance change.

Electromyographic (EMG) signals were picked up by 13 mm (1/2 inch) diameter silver surface

electrodes which fed a differential amplifier with a bandpass from 90 to 500 Hz. The amplified EMG

signal was rectified and averaged by an RC circuit with a time constant of .1 second. The resulting

average EMG signal was fed to another VCO, optically isolated and counted by a fourth counter. The

count for 1/12 second ranged from zero to 2000 counts for EMG levels from zero to 40 microvolts

RMS, giving a resolution of 50 counts per microvolt.

The counter chains described above were eventually incorporated on a single S-100 compatible

plug-in printed circuit card, along with their associated buffer latches, timing and control circuitry. Five

complete counters are on the final version of this circuit card, allowing for an additional EMG channel.

The voltage controlled oscillators and optical isolators were located next to the physiological data

amplifiers, on a separate chassis.

The counter chain card contained a 12 Hz timing signal generator, derived from the 60 Hz power

line frequency, and this  circuit transmitted an interrupt signal to the computer's CPU once every 1/12

second, to signal that data was waiting in the buffer latches. Thus the computer picked up fresh skin

temperature, EMG and GSR/BSR data 12 times a second.

Brainwave data collection and analysis

The method chosen for analyzing brainwave data deserves special consideration and discussion

because of its importance. I believed that brainwave data were most likely to contain detailed

information about identity states, and hence chose a brainwave analysis approach with care.
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The problem of identifying physiological response patterns associated with events in consciousness

may be thought of as the problem of decoding the body's language. This metaphor leads easily to

looking at the considerable literature which has developed on the recognition of vocal speech patterns, a

related problem. In the time domain, human vocal speech is a high data rate (rapidly changing) signal

which is difficult to analyze. Speech sounds vary considerably from person to person and from time to

time, even though the same word is repeated (Georgiou, 1978). The traditional approach to this problem

has been to extract a few useful "features" of the speech signal. Features are slowly varying parameters,

such as average amplitude, extracted from the raw data.

The features extracted in speech analysis are usually from the frequency domain, just as in

brainwave analysis. Although frequency domain analysis is sometimes done by FFT, the problems of

FFT in brainwave analysis also crop up in speech analysis. An alternative frequency domain feature

extraction approach is zero crossing detection and amplitude-period analysis (Georgiou, 1978). Some

speech recognition systems use this approach together with multiple bandpass filters (an idea which will

be discussed again in chapter 5, in a discussion of improvements which could be made in future

studies).

To understand zero crossing detectors, recall that the signals with which we are concerned are

wavelike, they constantly vary. If any steady (DC or direct current) component is eliminated, the signal

varies up and down around zero. A zero crossing detector identifies the points at which the signal

passes through zero, on its way up or down, as it must twice each cycle. The period of time between

zero crossings is obviously closely related to the frequency of a monochromatic signal (one containing

only one frequency component). If the signal is greatly amplified before zero crossing detection, then

the period between zero crossings will be related to the dominant frequency in any mixture of

frequencies. This property of detecting the dominant signal is sometimes called "capture" and has both

advantages and disadvantages. The advantage is that it can separate a dominant signal from rather

strong competing signals, but the disadvantage is that information about the weaker signals is lost. A
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major and significant advantage of zero crossing analysis is that it is fast and well suited to real-time

applications. It is also easily adaptable to varying epoch durations.

Beatty and Figueroa (1974) compared the effectiveness of FFT and amplitude-period measuring

zero crossing analysis of brainwaves. Zero crossing detection measured the period of the waveform, and

the RMS average amplitude of the signal between zero crossings was also measured. The dominant

frequency is the reciprocal of the period between every second zero crossing. They looked at the

average amplitude in six broad frequency bands and found correlations between the two techniques of

about .80. That correlation is high enough to indicate that amplitude-period analysis yields a fair

estimate of the spectral density of human EEG, at least in limited frequency bands.

The computer system for this research monitored two channels of EEG. Scalp signals were picked

up by five millimeter diameter silver cup electrodes, and fed to differential preamplifiers with frequency

response from three to 30 Hz. The sensitivity of the amplifiers to signals below three Hz was reduced to

minimize the capture effect (by which low frequency signals could block the measurement of higher

frequency, weaker, signals). The response at two Hz was less than 25% of the peak sensitivity.  The

response above 30 Hz was controlled to minimize 60 Hz and EMG interference, and the response at 40

Hz was less than 25% of the peak sensitivity. The two preamplifiers were carefully matched in phase

and frequency response by hand-trimming  capacitor values. Phase response was matched to within 10

degrees and frequency response was matched to five percent from three to 30 Hz.

Each amplified EEG signal was optically isolated (optical isolators can handle signals above three

hertz without serious drift) and fed a zero crossing detector and a precision rectifier circuit. The zero

crossing detector produced a brief pulse at every zero crossing of the EEG signal, i.e., at the beginning

of every half cycle of the signal. This pulse was used to interrupt the CPU and inform it that an EEG

half cycle had begun and that the EEG analysis circuitry required service.

The EEG analysis circuitry for one channel of EEG consisted of a timer which measured the period

between zero crossings in 1/2000ths of a second, and a peak reading analog to digital converter which



53

digitized the peak amplitude attained by the rectified EEG signal between each pair of zero crossings.

At the beginning of each half cycle the computer was programmed to pick up the period and amplitude

data from the previous half cycle and to reset the timer and amplitude circuitry so that data collection

for the next half cycle could begin. The time data from the second EEG channel was also sampled so

that the phase angle between the two channels could be calculated. This circuitry is discussed in more

detail by Scully (1976a).

In the final system, the EEG preamplifiers and optical isolators were mounted in the same chassis

with the other battery powered physiological data acquisition circuitry, while the rest of the EEG

analysis circuitry for both channels of EEG was located on a single S-100 compatible plug-in printed

circuit card.

An S-100 compatible interface card was designed which allowed the computer to control a Kodak

Carousel slide projector. The projector lamp could be turned on or off and the tray of slides could be

advanced to a new slide or reversed to an earlier slide, all under program control.

The computer was equipped with an ASR-33 Teletype, which was used as a printer, and a video

interface which allowed the computer to put 16 lines of 64 alphanumeric characters onto a television

screen. A free-standing keyboard, separate from the Teletype, was also interfaced with the computer,

allowing the experimenter to enter instructions and data into the computer without the noise of the

Teletype interfering with the experiment. The Teletype was located in another building, separate from

the experimental area.

The computer had 64k bytes of random access memory. This was sufficient memory to store all of

the data collected during a single experimental session. The system had the capability of recording

digital data onto audio cassette tapes, so that data from each experimental session could be preserved

for further analysis and read back into memory at a later date.
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Chapter 2  

METHOD

Subjects

Subjects in this study were volunteers from the Albion, Mendocino and Fort Bragg, California

communities. It was planned that each subject would be his or her own control, in that each subject

would view and respond to all of the slides, so no special subject selection procedures were used. The

subjects ranged in age from 19 to 64 years, two were male and 10 were female. Nine of the 12 subjects

had prior experience with biofeedback equipment (many were employees of Aquarius Electronics, a

biofeedback instrument manufacturing company). 

A modification was made in the data collection procedure after eight subjects had participated in

the study. Two of the subjects who participated in the modified study were male and two were female.

They ranged in age from 30 to 62 years.

Apparatus

The computerized physiological monitoring system described in chapter 1 was used to collect data.

Inputs to the computer included GSR/BSR, EMG, skin temperature, two channels of EEG, and data

from five pushbuttons. The five pushbuttons corresponded to the five possible responses a subject could

choose for each cartoon in McCarley's (1974) test. Only a single pushbutton response was accepted

from each subject for each cartoon.

McCarley's (1974) cartoon test items were photographed and turned into slides. Of the 52 cartoons,

49 were used as test slides and three were discarded because the cartoons were  photographed poorly.

The slides were placed in a Kodak Carousel slide tray, in the same sequence used in McCarley's test
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booklet (see copies of the cartoons in Appendix A). The discarded cartoons were numbers 37, 38 and

44.

A Kodak Carousel slide projector was connected to the computer, under its control. The slide

projector and physiological data acquisition circuitry were in one room, where the subjects sat in a

reclining chair during the experiment. I was with the computer in an adjoining room. The computer was

equipped with a video monitor (television display) which allowed me to monitor the physiological data

collected as the experiment progressed.

Procedure

 The  data were collected in January and February 1977. The study was run in my home. Subjects

sat in the living room, with the slide projector and physiological data acquisition system, while the

computer and I were in the adjoining bedroom during the data acquistion phase of the study. Both

rooms were normally illuminated. The reclining  chair used by the subjects was located about eight feet

from the projection screen for the slides. The screen was moved closer for one myopic subject.

When a subject arrived to participate in the study, I invited him or her to sit in a reclining chair,

located in the living room. I explained that the purpose of the study was to identify the physiological

correlates of emotional states. As each physiological modality was connected to the subject, its purpose

was explained, and questions were answered freely. It was made clear to each subject that the

instruments were passive monitors. Verbal informed consent was obtained from each subject. The

orientation and hook-up procedure took about 30 minutes for each subject.

The common ground electrode for all EEG and EMG measurements was a five millimeter diameter

silver cup, placed on the tip of the nose, and held in place with tape. As with all other electrodes, the

skin was prepared by scrubbing lightly with a Scotchbrite pad and cleaning with rubbing alcohol.

Bentonite electrode paste (Taylor & Abraham, 1969) was used for this ground electrode and for the



56

other EEG electrodes. EKG-sol electrode cream  was used for the EMG electrodes. The reference for

the two monopolar EEG measurements was created by linking two five millimeter diameter silver cup

electrodes, one on each mastoid process. 

For nine subjects, the two active EEG electrodes were placed temporally at T3 and T4 in the 10-20

system (Jasper, 1958). For the other three subjects, these electrodes were placed occipitally at O1 and

O2. In all cases, these two electrodes were held in place with a velcro elastic headband. The ground and

reference electrodes were held in place with  13 millimeter (half inch) wide tape.

For five subjects the EMG electrodes were placed over the frontalis muscle  at Fp1 and Fp2 in the

10-20 system, and for these subjects the electrodes were held in place by the same elastic band which

retained the EEG electrodes. The EMG electrodes were 13 millimeter (half inch) diamater flat silver

disks. For seven subjects the EMG electrodes were placed on each ankle, and were held in place with

50 millimeter (two inch) wide tape. I was not aware of Schwartz's (1976) work when the EMG

electrode placements were selected; suggestions for future  studies are discussed in chapters 4 and 5.

An ohmmeter was used to check contact resistance between each pair of electrodes. The input

impedance of the data acquisition amplifiers was 10 megohms, and electrode contact resistances of up

to 50,000 ohms were allowed. If an electrode pair exceeded this resistance, they were removed and the

skin was scrubbed until a low resistance contact could be obtained.

Skin resistance (GSR/BSR) measurements were made with 13 millimeter (half inch) diameter flat

silver electrodes attached to the ring and middle fingers of the left hand, with velcro elastic

fingerbands. Peripheral skin temperature was measured with a thermistor probe taped to the left index

finger tip.

Once all electrodes were properly connected, EEG data were recorded from each channel, for a

brief period, on a 100 Hz bandwidth heat-writing chart recorder. Thus the EEG signals were checked

for gross artefacts such as scalp muscle twitches or electronic equipment failures. The range and
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sensitivity settings on the physiological data acquisition instruments were noted and fed to the computer

via a keyboard, for storage in memory along  with the experimental data.

Each subject was told that a series of cartoon slides would be shown, and that the five pushbuttons

on a small box, held in the subject's lap, corresponded to the possible responses (identified by the

numbers one through five) to each cartoon. They were asked to "push the button corresponding to the

response which most closely matches how you feel at the moment, not necessarily what you would say

in the situation depicted." Subjects could take as much time as they wanted to choose a response, but

could only push a single button. The computer caused the slide tray to advance to the next slide only

after a response button was pushed. The screen was kept blank for a four second interstimulus interval

between slides. Subjects were asked to make pushbutton responses with their right hands, to remain

relaxed and to move as little as practical while viewing the slides.

The presentation of the slides and the acquisition of the physiological data were controlled by a

computer program, SLIDE, which was executed after I had left the subject alone in the living room, and

after the subject reported that he or she was comfortable, relaxed and ready to begin. A note was made,

during the presentation of the slides, of slides during which the subject coughed or moved unusually. I

viewed a video display of physiological data during the experiment, watching for any indications of

electrode slippage or equipment failure.

After the 49 slides were shown and the physiological data were recorded in the computer's

memory, the data were dumped onto cassette tape, to preserve them for further analysis. I returned to

the living room and rechecked the contact resistances of all electrode pairs. In every case these had

improved during the session. The electrodes were disconnected, and the subject was asked for his or her

subjective impression of the experiment. Each subject was thanked for participating in the experiment,

and offered an opportunity to look over the experimental results, once the data analysis was completed.

The computer program SLIDE, which collected and partially analyzed the data, was modified after

eight subjects had participated in the study. Additional 16 dimensional EEG data were collected for the
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last four subjects. These four subjects were among the nine whose temporal EEG was monitored. The

collection of further data was precluded by my incarceration.

Chapter 3

RESULTS 

An important part of the data reduction for this experiment was done in real-time, while the

experiment was running. The balance of the data analysis was done off-line, but on the same 8080A

computer system. The results of these analyses are presented, not in the order of calculation, but rather

in logical sequence.

Real-Time Data Analysis

The assembly language computer program SLIDE managed real-time data collection and analysis

as it supervised the experiment. Data were collected and summarized for storage in the computer's

memory. Separate data storage space was allocated in memory for responses to each of the 49 slides.

The slowly changing physiological data, skin temperature, EMG and GSR/BSR, were sampled 12

times each second. The computer retained only a few summary data for each of these measures, for

each slide: the initial value (when the slide first flashed on the projection screen), the final value

(collected when the subject pushed a button in response to the slide), the total of all samples collected

while the slide was viewed and the total number of samples collected for that slide.

In the case of EEG, the computer stored considerably more detailed data. For each of the two EEG

channels, each half cycle of the EEG signal was treated as an independent event. Its duration (period)

was measured in 1/2000ths of a second, and its peak amplitude was measured in microvolts. Using

these two data to describe each half cycle of EEG, the computer was programmed to sort each half

cycle into one of 128 categories, and count the total number of events occurring in each category, for
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each slide and each EEG channel. The result of this sorting and counting process was a two dimensional

matrix of numbers, representing a three dimensional amplitude-frequency histogram. A 128 point

histogram was produced and stored for each EEG channel and each slide. Thus, for one subject, the

computer calculated 98 histograms. Each histogram was stored in memory as a two dimensional matrix

organized 8 x 16, with 16 frequency categories and eight amplitude subcategories in each frequency

category.  The boundaries between the amplitude and frequency categories appear in Table 1.

After data had been collected from the first eight subjects in the experiment, a few preliminary

univariate analysis of variance calculations were done for the 128 dimensional EEG data. The results

from these (discussed in detail below)  were not promising and the SLIDE program was modified to

store additional EEG data. For each of the two EEG channels, 16 new data categories were created,

corresponding to the 16 frequency categories in Table 1. The total amplitude of all EEG half cycles in

each frequency category, during each slide, was calculated and stored. These new EEG data were

collected for the last four subjects. This had the advantage over the 128 point histogram data of finer

amplitude resolution. The lower dimensionality of these new EEG data also made them much more

manageable statistically. Data collection was interrupted due to my incarceration. 

Table 1 Frequency and Amplitude Category Boundaries
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 FREQUENCY (HERTZ)      AMPLITUDE (MICROVOLTS, PEAK)

        below 4                0 - 1
        4 – 5                            1 - 2
        5 - 6                 2 - 4
        6 - 7                   4 - 8
        7 - 8                        8 - 16
        8 - 9                              16 - 32
        9 - 10                            32 - 64
       10 - 11                                   64 - up
       11 - 12
       12 - 13
       13 - 14
       14 - 16
       16 - 18
       18 - 20
       20 - 22
       22 - up

Notes. If a datum fell on a category boundary, it was sorted into the lower category. 

In addition to period-amplitude analysis of each channel of EEG, the SLIDE program compared

the relative timing of the beginnings of half cycles in the two channels so that the phase angle between

the two signals could be calculated. The two channels of EEG were not necessarily at the same

frequency at all times so the concept of phase angle between them was not always meaningful,

nevertheless it was hoped that these data would prove useful in discriminating among egostates.

Phase angle is a relative measure, and was calculated both possible ways: channel R vs.channel L

and channel L vs.channel R. The first calculation was done at the end of every channel R half cycle, and

the second calculation was done at the end of every channel L half cycle. Represent the period of a

channel R half cycle as P(R) and the period of time from the beginning of the last channel L half cycle

until the present instant as P(RL), then the phase angles were calculated as:

 R vs.L phase = P(RL)/P(R)      L vs.R phase = P(LR)/P(L)

If both of these ratios were zero (i.e., if P(RL) = P(LR) = 0),  the two channels would be exactly in

phase, an unlikely condition. If one ratio were close to one and the other small, this would indicate a
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small phase angle or one close to 180 degrees.  A 90 or 270 degree phase difference would be expressed

as equal ratios of .5, assuming equal frequencies.

The range of each phase angle was divided into eight equal categories, and each phase angle datum

was sorted into one of these eight categories and counted as an event. For each slide, there were two

phase data vectors, each containing eight categories. Each category covered a 22.5 degree phase angle

span.

The results of the on-line data analysis were displayed to me, on the video screen, as the

experiment was running. These data were also tape recorded for later, off-line analysis.

Within-subjects Off-line Data  Analysis

The initial off-line data analysis was within subjects. Each subject's data were analyzed separately.

The main within-subjects analytical effort was focussed on the EEG data.

The slides were viewed for varying periods of time, and thus the data from the 49 slides

comprising one subject's record were not directly comparable. The number of events in any EEG

category was dependent on both the amount of EEG activity in the category and on the length of time

the slide was viewed.

This problem was solved by normalizing the EEG data by dividing each datum by the period of

time its slide was viewed.

A computer program was written to normalize the 128 point EEG histogram data, calculate

averages for each egostate, overall averages for each category and univariate F statistics for each

category. Although a few mildly (p<.05) significant F statistics turned up in these calculations, the

number of these did not exceed chance expectation. There was insufficient computer memory space
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available to calculate a multivariate analysis of variance (MANOVA) for all 128 dimensions, but it was

clear that the results of such a calculation would not have been significant.

One way of conceptualizing the 128 dimensional EEG histogram data for each subject is as a

collection of 49 points in 128 dimensional hyperspace. A computer program was written to calculate the

centroids of the five groups of points corresponding to the five egostates, and to calculate the distances

between them (by an RMS distance measure). The result of this calculation was that the five groups

overlapped, their diameters were much larger than the distances between them, for each subject's data.

The 16 dimensional EEG data for each channel for the last four subjects were then analyzed. The

EEG amplitude density in each frequency category was calculated by dividing the total amplitude in

each category by the period of time the slide was viewed. It might be worthwhile to point out that this

amplitude density datum could be increased either by a few high amplitude events or by a large number

of low amplitude events. MANOVA calculations failed to find any significant differences in amplitude

density, within subjects, among the egostates.

The non-EEG data were converted from the arbitrary units of measurement created by the VCO-

clock system, and were printed out in engineering units (i.e., microvolts for EMG, degrees Celsius for

temperature and ohms for BSR). Univariate within subjects statistical analyses of these data were also

disappointing, in that no significant differences were found among the egostates. The next approach

was to analyze data across subjects.

Across-subjects Off-line Data Analysis

The different subjects who participated in the experiment had varying baseline or resting levels for

each physiological measure, and their data could not be directly compared with each other. Each

subject's data were Z transformed within each physiological measure and across egostates, to

standardize the data and make them comparable across subjects. This procedure produced a single data
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set with 196 data. Table 2 shows how these data were distributed among the egostates (as defined by

subjects' pushbutton responses to the slides).

Table 2 Number of Responses in Each Egostate

---------------------------------------------------------------

                                         EGOSTATE

                        ---------------------------------------

      SUBJECT            AC       RC        A       PP       NP

---------------------------------------------------------------

       E.S.               5       12        22       5        5

       A.L.               8        6        13      12       10

       D.W.               7        4        19       9       10

       A.R.               7        9        15      10        8

total for all subjects   27       31        69      36       33

---------------------------------------------------------------

   

The non-EEG data were then subjected to univariate analyses of variance (ANOVA), to look for

differences among the  egostates in each non-EEG variable. The results of these ANOVA calculations

are in Table 3. These calculations were made for the pooled data from all 12 subjects. The data

analyzed were: final minus average EMG, average EMG, final minus average BSR, final minus initial

BSR, latency (the period of time a slide was viewed was also the time required for a response to be

selected), the average GSR and the final minus initial skin temperature data. Table 4 shows the mean Z

score values for the significant data.

Table 3 Univariate Analyses of Variance for Non-EEG data

---------------------------------------------------------------

     SOURCE                df       MS        F         R

---------------------------------------------------------------

ankle-ankle EMGF-EMGA    4/289     2.00     2.07      2.9%

  frontalis EMGF-EMGA    4/238     1.07     1.08      1.8%

        all EMGF-EMGA    4/533     1.86     1.90      1.4%

                 EMGA    4/533      .95     1.12       .8%

            BSRF-BSRA    4/582     4.42     4.16*     2.8%

            BSRF-BSRI    4/582     3.94     4.21*     3.2%

          N (latency)    4/582     3.91     4.05*     2.8% 

                 GSRA    4/582     4.00     5.24**    3.6% 

            TEMF-TEMI    4/582     1.55     1.59      1.1%
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---------------------------------------------------------------

Notes. * p<.005    ** p<.001

Table 4 Mean Z Scores for Significant Non-EEG Data

---------------------------------------------------------------

                                         EGOSTATE

                        ---------------------------------------

        SOURCE           AC       RC        A       PP       NP

---------------------------------------------------------------

            BSRF-BSRA  -.07     +.01     +.19     +.04     -.30

            BSRF-BSRI  -.21     +.13     +.16     -.09     -.24

          N (latency)  +.03     +.35     -.16     +.17     +.15

                 GSRA  +.23     -.22     -.16     +.16     +.20

---------------------------------------------------------------

Although the available computer power was inadequate for multivariate analysis of the 128

dimensional EEG data, it was clear from univariate calculations that such analysis would not be fruitful.

The main EEG data analysis was performed using the 16 dimensional data sets from the last four

subjects (these were the only available 16 dimensional EEG amplitude density data).  There were four

16 dimensional data sets: the 16 point amplitude density spectra from the right and left hemispheres, the

16 point amplitude density ratio of right to left hemisphere and a 16 dimensional data set made up from

the two eight dimensional phase data vectors.

The left and right hemisphere EEG amplitude density data and the phase data were analyzed as

three separate data sets because they were collected separately and because I hoped that each additional

data set would reveal further differences among the egostates. 

The right/left ratio data were created from the raw data in an effort to check for differences in EEG

amplitude between the two hemispheres, among the egostates. Such differences would not appear in the

amplitude density data because of the Z transformation used to create those data sets.
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MANOVA techniques were used to analyze each of these 16 dimensional data sets, in an effort to

detect differences among the egostates, after the last four subject's data were Z-transformed and pooled,

as though they were drawn from a single subject.

Multivariate analysis of variance  methods assume equality of group dispersions (which

corresponds to the more familiar univariate assumption of equal group variances). The Box test for

equality of group dispersions (Cooley & Lohnes, 1971) was applied to all four 16 dimensional EEG

data sets, resulting in rejection of this hypothesis in for all but the right hemisphere amplitude density

data. These results appear in Table 5.

Cooley and Lohnes (1971) suggest that MANOVA procedures are robust with respect to departures

from equality of group dispersion, and that the Box test can sometimes be embarrassingly sensitive.

MANOVA calculations were therefore computed by several different methods, in an effort to detect

significant differences among the egostates. These yielded varying results, probably due to the

inequality of group dispersions.

Two of the MANOVA methods used Wilks' lambda, the ratio of the determinants of E, the error

sum of squares and cross products matrix, and T, the total sum of squares and cross products matrix

(Morrison, 1976). One such computation yielded a chi-squared variate and the other yielded an F

statistic, both of which are approximations. These appear in Table 6, and were calculated from lambda

by the equations below.

2
�   = -[N - r - 1/2(u - g + 1)] ln �      where N = 196, r = 5,  u = 16 and g = 4.                                           

 F = y(1 - y)(df2/df1)   where  y = s/1
�

 s = [(u*u*g*g - 4)/(u*u + g*g -5)] , df1 = u*g and

  df2= s[(N-1) - (u + g + 1)/2] - (u*g - 2)/2.
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The other two MANOVA computations used the ratio of the between groups sum of squares and

cross products matrix and the error (within groups) sum of squares and cross products matrix (HE 1� ).

One approach, from Roy (in Morrison, 1976) was to find c, the greatest root of this matrix, and compare

the quantity theta = c/(1 + c) to the values in Heck's charts of the upper percentage points of the largest

characteristic root. The other method used the Lawley-Hotelling trace statistic, where a chi-squared

variate was computed from the product of the trace of the HE 1�  matrix and N, the number of data

points (Morrison, 1976). These results appear in Table 7.

Table 5 Box Tests of the Equality of Group Dispersions for the 16 Dimensional EEG Amplitude Density and Phase

Data

---------------------------------------------------------------

                           DISPERSIONS FOR EACH EGOSTATE (x10 )

                         --------------------------------------

 SOURCE             F       AC      RC      A      PP      NP

 --------------------------------------------------------------

 left hemisphere  1.30*     1       6     5430     16      24

right hemisphere  1.19      6     247    17383    140      78

phase angle data  1.37*   .02      18      205      3      .1

right/left ratio  1.32*     3     874    16016     34    6573

---------------------------------------------------------------

Notes. df= 544/13544   * p<.001

Table 6 MANOVA Tests of the Equality of Group Means, using Lambda,  for the 16 Dimensional EEG Amplitude

Density and Phase Data

--------------------------------------------------------------

   SOURCE           LAMDA      CHI-SQUARED        F

--------------------------------------------------------------

 left hemisphere    .668         74.5             1.17

right hemisphere    .6749        72.3             1.14

phase angle data    .7243        59.5              .93

right/left ratio    .7158        61.7              .96

--------------------------------------------------------------

     Notes. df = 64 for chi-squared, 64/691 for F
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Table 7 MANOVA Tests of the Equality of Group Means, using HE
1�

 for the 16 Dimensional EEG Amplitude

Density and Phase Data

---------------------------------------------------------------

    SOURCE         THETA       TRACE    CHI-SQUARED

---------------------------------------------------------------

 left hemisphere   .179*      .4328      84.8**

right hemisphere   .153       .4199      82.3*

phase angle data   .156       .3433      67.3

right/left ratio   .132       .3507      68.7

---------------------------------------------------------------

Notes. df = 64 for chi-squared; s = 4, m = 5.5, n = 87 for theta

* p<.05  ** p<.025

Univariate ANOVA calculations were also computed for each of the 16 dimensional data sets. The

results of these calculations, together with mean Z scores for each datum, are presented in Tables 8

through 10.
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Table 8 EEG Amplitude Density ANOVA Results and Mean Z Scores

---------------------------------------------------------------

                                    MEAN Z SCORES BY EGOSTATE

FREQUENCY                         -----------------------------

 (Hertz)    MS    F          R      AC    RC     A    PP    NP

---------------------------------------------------------------

                      LEFT HEMISPHERE

---------------------------------------------------------------

below 4   3.08   3.27**     6.4%  +.29  -.26  -.23  +.19  +.30

 4 - 5    4.29   4.69****   8.9%  -.25  -.05  -.19  +.02  +.62

 5 - 6     .39    .39        .8%  +.09  -.01  +.08  -.15  -.06

 6 - 7     .68    .68       1.4%  -.12  +.09  +.13  -.12  -.12

 7 - 8    1.06   1.08       2.2%  +.05  +.14  +.11  -.19  -.20

 8 - 9     .96    .97       2.0%  +.04  -.20  +.13  +.06  -.20

 9 - 10    .39    .38        .8%  +.16  -.00  +.04  -.14  -.05

10 - 11   1.84   1.90       3.8%  -.12  +.22  +.13  -.03  -.36

11 - 12    .81    .82       1.7%  -.11  +.03  +.14  -.21  -.00

12 - 13    .88    .89       1.8%  +.09  -.04  +.14  -.20  -.11

13 - 14   2.74   2.89**     5.7%  -.07  +.35  +.13  -.12  -.40

14 - 16   3.44   3.68***    7.2%  +.32  +.14  +.16  -.41  -.29

16 - 18   1.70   1.75       3.5%  +.12  +.21  +.10  -.30  -.18

18 - 20   2.79   2.95**     5.8%  +.05  +.33  +.13  -.34  -.27

20 - 22   2.91   3.08**     6.1%  +.08  +.33  +.13  -.32  -.31

22 - up   3.18   3.35**     6.6%  +.14  +.15  +.21  -.41  -.26

---------------------------------------------------------------

                    RIGHT HEMISPHERE

---------------------------------------------------------------

below 4   2.53   2.66*      5.3%  +.33  -.24  -.18  +.04  +.30

 4 - 5    1.80   1.86       3.8%  +.20  -.20  -.18  +.24  +.14

 5 - 6    1.44   1.47       3.0%  +.08  +.06  -.18  -.04  +.30

 6 - 7    2.29   2.39       4.8%  +.27  -.29  -.07  +.31  -.14

 7 - 8     .36    .36        .8%  -.02  +.10  -.06  -.08  +.14

 8 - 9    1.96   2.03       4.1%  -.10  +.42  -.08  -.21  +.07

 9 - 10    .88    .89       1.8%  +.12  -.23  +.10  -.14  +.05

10 - 11    .49    .50       1.0%  +.17  -.02  +.05  -.08  -.15

11 - 12   1.71   1.76       3.6%  -.30  +.33  -.06  +.13  -.07

12 - 13    .93    .94       1.9%  -.22  +.23  +.06  -.05  -.12

13 - 14   1.34   1.37       2.8%  -.19  +.11  +.11  +.10  -.29

14 - 16   1.74   1.80       3.6%  -.13  +.26  +.14  -.15  -.26

16 - 18   3.23   3.44**     6.7%  -.19  +.22  +.26  -.31  -.26

18 - 20   1.78   1.84       3.7%  -.14  +.13  +.20  -.28  -.12

20 - 22   2.53   2.65*      5.3%  -.16  +.21  +.16  +.02  -.43

22 - up   1.79   1.85       3.7%  -.16  +.21  +.14  -.03  -.33

---------------------------------------------------------------

Notes. df = 4/191   * p<.05  ** p<.025  *** p<.01  **** p<.005

Table 9 EEG Phase Angle ANOVA Results and Mean Z Scores - Right vs. Left Hemisphere
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---------------------------------------------------------------

                                   MEAN Z SCORES BY EGOSTATE

PHASE ANGLE                       -----------------------------

(degrees)  MS       F       R      AC    RC     A    PP    NP

---------------------------------------------------------------

 0-22.5   1.22     1.25     2.5%  -.18  -.02  -.11  +.29  +.08

22.5-45    .78      .79     1.6%  -.24  +.10  +.11  -.04  -.09

45-67.5   1.67     1.72     3.5%  -.05  +.30  +.10  -.25  -.18

67.5-90   2.35     2.46*    4.9%  -.14  +.05  +.27  -.19  -.28

90-112.5  1.54     1.59     3.2%  +.07  +.34  +.01  -.18  -.20

112.5-135 3.38     3.62**   7.0%  -.03  +.34  +.17  -.18  -.46

135-157.5 1.11     1.13     2.3%  -.02  +.17  +.12  -.19  -.19

157.5-180 1.98     2.06     4.1%  -.02  +.18  +.18  -.23  -.29

---------------------------------------------------------------

Notes. df = 4/191  * p<.05   ** p<.01

 Table 10 Right/Left EEG Amplitude Ratio ANOVA Results and Mean Z Scores

---------------------------------------------------------------

                                    MEAN Z SCORES BY EGOSTATE

FREQUENCY                         -----------------------------

 (Hertz)   MS       F       R      AC    RC     A    PP    NP

---------------------------------------------------------------

below 4   .49      .49     1.0%  +.23  -.03  -.02  -.11  -.00

 4 - 5   1.18     1.20     2.5%  +.29  -.10  -.08  +.16  -.15

 5 - 6   1.21     1.23     2.5%  -.05  +.01  -.14  -.01  +.32

 6 - 7    .74      .75     1.5%  +.12  -.20  -.04  +.18  -.02

 7 - 8    .83      .84     1.7%  -.07  -.05  -.08  -.01  +.28

 8 - 9   1.56     1.61     3.3%  -.13  +.34  -.12  -.11  +.15

 9 - 10   .85      .76     1.6%  -.01  -.27  +.09  +.07  +.12

10 - 11   .68      .69     1.4%  +.18  -.13  -.02  -.12  +.16

11 - 12  1.48     1.52     3.1%  -.04  +.31  -.17  +.15  -.05

12 - 13   .74      .74     1.5%  -.20  +.06  -.08  +.11  +.16

13 - 14  1.02     1.04     2.1%  +.06  -.25  -.06  +.12  +.19

14 - 16  1.03     1.05     2.1%  -.29  -.03  -.03  +.19  +.11

16 - 18  1.31     1.34     2.7%  -.31  -.11  +.02  +.04  +.26

18 - 20  1.83     1.90     3.8%  -.28  -.26  +.03  +.11  +.28

20 - 22   .29      .29      .6%  -.07  -.03  -.05  +.15  +.02

22 - up  2.36     2.48*    4.9%  -.25  -.05  -.15  +.40  +.12

---------------------------------------------------------------

Notes. df = 4/191  * p<.05

A discrepancy between the L vs.R and R vs.L phase data led to a careful investigation of the raw

data and the SLIDE program which collected the data. A program error in SLIDE was found which

spoiled the collection of the Left vs.Right phase data and these data were discarded.  The discovery of
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this error led to a further careful check of the other raw data, and two more minor errors in the Z

transforming programs were found and corrected. An eight dimensional MANOVA of the R vs.L phase

data yielded no significance.

The significant findings in the 16 dimensional EEG amplitude density data led to a further

investigation of the EEG data. The 128 point EEG data were analyzed as eight 16 dimensional subsets,

using MANOVA, across the last four subjects, with non-significant results. New 16 dimensional data

sets were then created by totaling the number of half-cycles of EEG within each of the frequency

categories. When divided by the length of time each slide was viewed, these calculations yielded a

frequency of occurrence datum for each frequency category. The average amplitude of the EEG half-

cycles in each frequency category was calculated by dividing the amplitude density datum by the

frequency of occurrence datum, yielding yet another 16 dimensional data set for each hemisphere of the

brain.

MANOVA calculations for these four 16 dimensional data sets yielded results not quite reaching

significance, which are presented in Table 11. The frequency of occurrence data are labeled "Fr" and

the amplitude data are labeled "A." Although the differences between the egostates in the left

hemisphere Fr and A data sets did not quite reach significance, when considered as 16 dimensional sets,

the ANOVA calculations associated with these are presented in Table 13, for the light they may shed on

the EEG amplitude density data in Table 8 (they show that the high amplitude density associated with

the Parent egostates in the low frequency bands is not due to a few high amplitude events).  Univariate

ANOVA calculations for left hemisphere average amplitude, frequency of occurrence and amplitude

density data, summed across all frequency categories, appear in Table 12. These results show

significant differences among the egostates in each case.

    Table 11 16 Dimensional MANOVA Results for EEG Average Amplitude and Frequency of Occurrence Data

 ---------------------------------------------------------------

   SOURCE               F        LAMBDA      THETA       TRACE



71

---------------------------------------------------------------

left hemisphere Fr     1.14      .676        .172        .419

left hemisphere A       .95      .718        .125        .347

right hemisphere Fr    1.06      .694        .160        .391

right hemisphere A      .84      .747        .113        .306

---------------------------------------------------------------

Notes. df = 64/691 for F; s = 4, m = 5.5, n = 87 for theta

          Table 12 ANOVA Results and Mean Total Z Scores for all Categories of EEG Left Hemisphere Data

---------------------------------------------------------------

                                     MEAN Z SCORES BY EGOSTATE

                                  -----------------------------

   SOURCE   MS     F       R       AC    RC    A     PP     NP

---------------------------------------------------------------

     Fr     3.21   3.92**  7.6%   +.02  +.35  +.45  -.54  -.86

     A     17.09   2.65*   5.3%   +.35  +.59  +.32 -1.09  -.48

A density  35.96   4.19**  8.1%   +.36  +.68  +.65 -1.36  -.97

--------------------------------------------------------------

Notes. df = 4/191  * p<.05  ** p<.005
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Table 13 ANOVA Results and Mean Z Scores for Left Hemisphere EEG Average Amplitude and Frequency of

Occurrence Data

---------------------------------------------------------------

                                     MEAN Z SCORES BY EGOSTATE

FREQUENCY                          ----------------------------

 (Hertz)   MS     F        R       AC     RC    A     PP    NP

---------------------------------------------------------------

                     Amplitude Average

---------------------------------------------------------------

below 4   .30    .30       .6%    +.13  +.05  +.02  -.09  -.10

 4 - 5    .75    .75      1.6%    +.08  +.06  +.08  -.25  -.00

 5 - 6   1.71   1.76      3.6%    +.10  +.23  +.06  -.36  -.01

 6 - 7   1.16   1.18      2.4%    +.13  +.17  +.05  -.29  -.06

 7 - 8   2.68   2.83*     5.6%    -.07  +.05  +.22  -.45  +.05

 8 - 9    .14    .14       .3%    +.04  -.07  +.04  -.08  +.03

 9 - 10   .42    .42       .9%    -.17  +.00  +.10  -.02  -.06

10 - 11  1.18   1.20      2.4%    +.07  +.32  -.06  -.17  -.04

11 - 12  1.24   1.26      2.6%    +.14  +.20  +.01  -.30  -.00

12 - 13  1.89   1.96      3.9%    +.12  +.19  +.10  -.38  -.07

13 - 14  2.31   2.41      4.8%    +.18  +.21  +.12  -.33  -.24

14 - 16  2.22   2.31      4.6%    +.29  +.01  +.15  -.29  -.25

16 - 18  1.37   1.40      2.9%    +.08  +.11  +.14  -.27  -.17

18 - 20  2.25   2.35      4.7%    -.00  +.32  +.12  -.30  -.22

20 - 22  4.09   4.44***   8.5%    +.23  +.38  +.11  -.40  -.34

22 - up  2.00   2.07      4.2%    +.15  +.19  +.13  -.28  -.26

---------------------------------------------------------------

                      Frequency of Occurrence

---------------------------------------------------------------

below 4  3.39   3.63**    7.1%    +.16  -.24  -.26  +.24  +.37

 4 - 5   4.51   4.95***   9.4%    -.32  -.13  -.20  +.23  +.55

 5 - 6    .29    .29       .6%    -.01  -.15  +.08  +.02  -.03

 6 - 7    .83    .84      1.7%    -.25  -.04  +.12  +.09  -.11

 7 - 8    .63    .63      1.3%    +.12  +.11  +.01  -.00  -.23

 8 - 9    .76    .77      1.6%    -.01  -.16  +.08  +.15  -.17

 9 - 10   .51    .51      1.1%    +.20  +.01  -.01  -.16  +.02

10 - 11  1.20   1.22      2.5%    -.06  +.11  +.12  +.01  -.32

11 - 12   .73    .74      1.5%    -.09  -.11  +.16  -.13  -.01

12 - 13   .39    .39       .8%    -.01  -.07  +.09  +.04  -.15

13 - 14  2.42   2.54*     5.0%    -.21  +.30  +.11  +.03  -.38

14 - 16  2.40   2.51*     5.0%    +.22  +.21  +.11  -.34  -.24

16 - 18  1.79   1.85      3.7%    +.16  +.25  +.07  -.27  -.22

18 - 20  2.55   2.68*     5.3%    +.12  +.30  +.11  -.33  -.25

20 - 22  1.33   1.36      2.8%    -.05  +.20  +.13  -.18  -.22

22 - up  3.44   3.69**    7.2%    +.11  +.13  +.24  -.44  -.25

---------------------------------------------------------------

Notes. df = 4/191  * p<.05  ** p<.01  *** p<.005
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The results presented up to this point clearly indicate that there are measurable physiological

differences among the five egostates which were defined by subjects' responses to the slides. It is

possible that significant differences among the egostates would have been found in all physiological

measures if data had been collected from more subjects. However, with data from four subjects, the

only significant differences were found in the left hemisphere EEG amplitude density data and four of

the non-EEG measures. These results justified further analysis in an effort to learn if these differences

were sufficient to be usable in identifying egostates from physiological data alone. 

Discriminant Analysis and Classification

Once the foregoing analyses were completed, the next steps were: (1) to select the most useful set

of variables for classification of the responses into egostates from physiological data and (2) to

determine how well the classifications actually fit the egostates defined by the subjects' pushbutton

responses. Stepwise discriminant analysis was chosen as a selection technique. This mathematical

approach tests a set of variables to find the one with the most discriminating power and enters it into the

group of selected variables if its discriminating power meets a preselected minimum standard. Then the

group of selected variables is scanned to see how much decrease in discriminating power would result

from removing each variable, and this is compared to a preselected tolerance level. If a variable falls

below the tolerance, it is removed. The process continues in steps like these until no new variable can

be entered or removed.

Of the various 16 dimensional data sets examined, only one showed significance in a MANOVA

test, the left hemisphere amplitude density data. The remaining 16 dimensional data sets were not used

in further analysis. The four significant non-EEG variables (BSRF-BSRI, BSRF-BSRA, N[latency], and

GSRA) were combined with the left hemisphere amplitude density data to form a 20 dimensional data
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set for the first stepwise discriminant analysis (the computer had sufficient memory for a maximum of

20 dimensions).

For this analysis, the threshold values of F statistics for entry or removal of a variable were set at

.8. The result was that 11 variables were entered into the data set, nine were not. The order in which

variables were entered and their F to remove values are reported in Table 14, together with F to enter

values for the variables not included. The discriminant F statistic is also reported for each step of the

analysis, with its degrees of freedom.

Table 14 20 Dimensional Stepwise Discriminant Analysis of Left Hemisphere Amplitude Density Data and Non-EEG

Data

---------------------------------------------------------------

  VARIABLE     F TO ENTER   F TO REMOVE  DISCRIMINANT F   df

---------------------------------------------------------------

 4 - 5 Hz                       4.69            4.69    4/191

22 - up Hz                      3.26            3.96    8/380

N(latency)                      2.23            3.37   12/500

BSRF-BSRA                       2.31            3.12   16/575

below 4 Hz                      1.84            2.87   20/621

13 - 14 Hz                      1.32            2.61   24/650

14 - 16 Hz                      1.27            2.41   28/669

22 - up Hz        .72                           2.71   24/650

11 - 12 Hz                      1.18            2.49   28/669

 GSRA                           1.21            2.33   32/680

 8 - 9 Hz                        .98            2.18   36/688

 7 - 8 Hz                        .91            2.05   40/692

 9 - 10 Hz                       .81            1.93   44/694

 6 - 7 Hz         .79

10 - 11 Hz        .71

20 - 22 Hz        .58

 5 - 6 Hz         .58

22 - up Hz        .57

18 - 20 Hz        .53

BSRF-BSRI         .42

 6 - 7 Hz         .39

16 - 18 Hz        .07

---------------------------------------------------------------

The six variables not entered in the group of selected variables, but with highest F to enter values,

were combined  with the selected variables in Table 14 and the three variables in Table 12: the left
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hemisphere average frequency datum (Fr), the left hemisphere average amplitude datum (A) and the left

hemisphere overall amplitude density (A density), thus forming a new 20 variable data set. A new

stepwise discriminant analysis was then performed, with F to enter and remove threshold values set at

.5. The results of this analysis are displayed in Table 15, in the same format used in Table 14.

Table 15  20 Dimensional Stepwise Discriminant Analysis of Non-EEG Data and Selected Left Hemisphere EEG Data

---------------------------------------------------------------

  VARIABLE   F TO ENTER   F TO REMOVE   DISCRIMINANT F    df

---------------------------------------------------------------

 4 - 5 Hz                   4.69           4.69         4/191

A density                   4.28           4.47         8/380

BSRF-BSRA                   2.26           3.73        12/500

N(latency)                  2.66           3.47        16/575

13 - 14 Hz                  1.79           3.14        20/621

  GSRA                      1.40           2.85        24/650

11 - 12 Hz                  1.27           2.62        28/669

 8 - 9 Hz                   1.02           2.42        32/680

10 - 11 Hz                  1.03           2.27        36/688

18 - 20 Hz                   .73           2.11        40/692

below 4 Hz                   .60           1.97        44/694

14 - 16 Hz                   .75           1.86        48/695

   A                         .79           1.78        52/695

18 - 20 Hz      .43                        1.89        48/695

  Fr                         .59           1.79        52/695

12 - 13 Hz                   .65           1.71        56/695

A density       .49                        1.80        52/695

 9 - 10 Hz                   .51           1.71        56/695

 5 - 6 Hz                    .55           1.63        60/693

22 - up Hz      .49

 7 - 8 Hz       .41

A density       .39

18 - 20 Hz      .14

20 - 22 Hz      .07

---------------------------------------------------------------

The result of this discriminant analysis was that a set of 15 variables was selected as being those

most useful for distinguishing among the five egostates. To check the usefulness of this set of variables,

group classification functions were then calculated, using this set of variables, by Jennrich's method

(1977), which is another form of discriminant analysis. A group classification function is a linear
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combination of the variables together with a classification function constant. The five sets of

coefficients and their related classification constants are presented in Table 16.

Table 16  Group Classification Coefficients and Constants and Final Discriminant F to Remove Values

---------------------------------------------------------------

                       COEFFICIENTS AND CONSTANTS BY EGOSTATE

               FINAL   ----------------------------------------

VARIABLE   F TO REMOVE    AC      RC      A       PP      NP

---------------------------------------------------------------

 4 - 5 Hz    3.23      -.305   -.246   -.048   -.083   +.675

BSRF-BSRA    2.85      -.106   -.439   +.415   -.091   -.316

N(latency)   2.79      +.168   +.331   -.331   +.293   +.018

below 4 Hz   1.61      +.792   -.343   -.111   -.118   -.110

11 - 12 Hz   1.43      -.315   -.232   +.104   -.038   +.405

14 - 16 Hz   1.39      +.728   -.241   -.013   -.176   +.039

13 - 14 Hz   1.14      -.115   +.211   -.050   +.400   -.283

   A         1.11      -.089   +.168   +.035   -.169   -.074

  Fr         1.08      +.266   +.049   +.041   -.289   -.288

 8 - 9 Hz    1.04      -.001   -.323   +.151   +.160   -.101

12 - 13 Hz    .81      +.022   -.347   +.094   -.003   +.221

  GSRA        .80      +.112   -.240   +.080   +.192   -.250

 9 - 10 Hz    .59      +.312   -.086   -.030   -.095   +.072

10 - 11 Hz    .58      -.162   +.135   +.032   +.191   -.178

 5 - 6 HZ     .55      +.189   -.139   +.084   -.171   +.009

 CONSTANT              -.347   -.276   -.160   -.247   -.464

---------------------------------------------------------------

The group classification coefficients [B(I,G) for the Ith variable and the Gth egostate] and

constants [A(G) for the Gth egostate] were used to calculate the probability P(G) that a slide, J,

belonged to egostate G, by the method set out below.

    P(G) = exp[D(G)]/Q  where  Q = exp[D(1)] + ... + exp[D(5)],

    D(E) = A(E) + X(J,1)*B(1,E) + ... + X(J,15)*B(15,E),

    and X(J,K) is the datum for the Kth physiological measure and the Jth slide.

The result of these classification calculations was a set of five P(G) values for each of the 196

slides, corresponding to the posterior probability that each slide was classified into egostate G from the

physiological data. If each slide is classified into the egostate for which it has the highest posterior
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probability, the confusion matrix in Table 17 results. The percentage figures in parenthesis are the

percentage of responses correctly classified. 

Table 17   Confusion Matrix for Classification of Slides into Egostates from Selected Physiological Data

---------------------------------------------------------------

                  NUMBER OF EVENTS CLASSIFIED BY EGOSTATE

RESPONSE        -----------------------------------------------

EGOSTATE          AC        RC        A         PP       NP

---------------------------------------------------------------

  AC            10 (37%)   6          4         5        2

  RC             3        15 (48%)    3         7        3

  A             13         9         27 (40%)   8       12

  PP             3         4          3        17 (47%)  9

  NP             4         2          5         4       18 (55%)

---------------------------------------------------------------

Note. The RESPONSE EGOSTATE is the egostate corresponding to the response chosen by the

subject.

Table 17 shows the number and percentage of "direct hits" and misses in classification. The overall

percentage of hits was 44.4%. An additional 24% of the slides were "near misses," defined as slides for

which the response egostate posterior probablity was second highest and exceeded 20%. These near

misses were data points which fell near the classification boundaries.

The possibility existed that substantial variations among subjects might be detected. To check for

this, Table 18 shows the distributions of classified egostates vs. response egostates for each subject.
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                                    Table 18  Classified vs. Response Egostates for Each Subject

---------------------------------------------------------------

                    NUMBER OF EVENTS CLASSIFIED BY EGOSTATE

RESPONSE          ---------------------------------------------

EGOSTATE           AC       RC        A       PP       NP

---------------------------------------------------------------

                      SUBJECT E.S.

---------------------------------------------------------------

  AC               3 (60%)  1         0        1        0

  RC               1        4 (33%)   2        4        1

  A                6        2         7 (32%)  2        5

  PP               0        0         0        4 (80%)  1

  NP               2        1         0        1        1 (20%)

total             12        8         9       12        8

---------------------------------------------------------------

                      SUBJECT A.L.

---------------------------------------------------------------

  AC               3 (38%)  2         2        0        1

  RC               0        4 (67%)   0        2        0

  A                2        2         6 (46%)  1        2

  PP               1        2         1        6 (50%)  2

  NP               1        1         1        1        6 (60%)

total              7       11        10       10       11

---------------------------------------------------------------

                      SUBJECT D.W.

---------------------------------------------------------------

  AC               1 (14%)  3         1        2        0

  RC               0        2 (50%)   1        1        0

  A                4        3         7 (37%)  2        3

  PP               0        1         2        4 (44%)  2

  NP               1        0         4        1        4 (40%)

total              6        9        15       10        9

---------------------------------------------------------------

                      SUBJECT A.R.

---------------------------------------------------------------

  AC               3 (43%)  0         1        2        1

  RC               2        4 (44%)   0        1        2

  A                1        2         7 (47%)  3        2

  PP               2        1         0        3 (30%)  4

  NP               0        0         0        1        7 (89%)

total              8        7         8       10       16

---------------------------------------------------------------

grand total       33       35        42       42       44

---------------------------------------------------------------

To show how the group centroids were separated from each other in this discriminant space, the

posterior probabilities for each group mean vector were calculated, as though it were a data point. These
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are presented in Table 19. It is clear from these results that the group centroids are well separated in this

discriminant space.

                                              Table 19 Posterior Probabilities for Group Centroids

---------------------------------------------------------------

                     POSTERIOR PROBABILITY BY EGOSTATE

RESPONSE         ----------------------------------------------

EGOSTATE          AC          RC         A         PP       NP

---------------------------------------------------------------

   AC            34.6%      16.6%     19.6%      16.9%    12.3%

   RC            15.8%      32.8%     18.7%      19.4%    13.2%

   A             18.5%      18.6%     32.6%      17.4%    12.8%

   PP            15.4%      18.7%     16.9%      31.6%    17.3%

   NP            13.2%      14.9%     14.6%      20.3%    37.0%

The net result of analysis of the data from the last four subjects in this study indicates not only that

physiological correlates of egostates exist, but also that recognition of egostates is possible, from

physiological data, by use of discriminant classificaion equations.
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Chapter 4

DISCUSSION

The final results of efforts to classify the 196 slides into egostates from physiological data,

presented in Table 17, support the hypothesis that identity states can be recognized from pattern

analysis of physiological data. These results, together with the results presented in earlier tables, also

permit some discussion of the physiological correlates of egostates.

The non-EEG data in Table 4 present a consistent picture. Recalling that Jung (1918) found long

response latencies associated with emotionally evocative stimuli, and that elevated GSRA levels and

depressed BSRF-BSRA levels are usually associated with arousal, it appears that the Adult egostate is

the least aroused. This is, of course, consistent with TA theory (Berne, 1961). Interestingly, it is the

Nurturing Parent egostate which shows the strongest indications of arousal in all of the non-EEG

measures.

The EMG data proved not to be very useful because different EMG electrode placements were

used for some subjects, and because the EMG electrode placements were chosen without awareness of

Schwartz's (1976) work with facial EMG patterns and emotions. In further research along these lines,

EMG electrode placements on the corrugator and depressor muscles might yield interesting results.

The skin resistance data proved quite useful. Tables 14 through 16 show that the BSRF-BSRA and

GSRA measures both provided useful discriminating information, while BSRF-BSRI was redundant (it

correlated highly, .66, with GSRA).
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The lack of useful skin temperature responses could easily be due to the long latency usually

associated with this response. Useful temperature responses might be collected in a more slowly paced

study.

The brainwave data were the main focus of interest. The 128 dimensional EEG data proved to be

much less useful than was originally hoped. They were too unwieldy to manipulate statistically, and the

low amplitude resolution of the amplitude subcategories proved fatal to any hopes for statistical

significance. Some useful information was salvaged from the 128 point data: the number of half-cycles

of EEG in each frequency category, a datum which should be stored in future studies of this type.

Only one of the 16 dimensional EEG data sets met the equality of group dispersions assumption of

the multivariate linear model. In every other case, the Adult ego state dispersion (see Table 5) was

significantly higher than that of the other egostates. This may be interpreted as a possible indication that

subjects gave Adult responses in spite of non-Adult feelings. The stimuli in McCarley's cartoons are

Adult in nature, and tend to encourage this type of response, in spite of the instructions given to subjects

"to pick the response closest to how you feel and not what you might say."

Subjects were asked for their impressions of the experiment after data collection was completed.

Most subjects said that they often found that none of the five possible responses really felt correct and

that they had been forced to pick a response different from their true feelings. This may be a partial

explanation of the 44.4% direct hit level, as well as the high Adult dispersions. It is interesting to note

in Table 18 that substantially fewer slides were classified into the Adult egostate by physiological data

than by subject response (42 vs. 69), while every other egostate gained members from classification

compared to responses (compare the totals in Tables 2 and 18).

In Table 18 the percentage of hits noted in parenthesis is the percentage of responses correctly

classified. If we calculate the percentage of classifications which are correct responses instead, we find

64.3% of the Adult classifications to be correct. In other words, though the computer picked fewer

slides as members of the Adult group, it was more often correct in these choices than in the average
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classification (44.4% accuracy). This lends further support for the notion that subjects sometimes

picked Adult responses in spite of non-Adult feelings.

The estimation of the percentage of errors likely in classifying a new set of experimental data is not

a simple task. Using one set of data to create discriminant coefficients and then using the same set of

data to test the reliability of those discriminant coordinates usually leads to an optimistic estimate of

accuracy. However, as the number of data points becomes large compared to the number of variables,

this error decreases (Lachenbruch & Mickey, 1968), and with 15 variables and 196 data points, the error

may be acceptable. Of course, repeating the same procedure with a new, larger sample of subjects

would be the ultimate test of across-subject validity.

Some of the errors in classification may have been due to ambiguity in the responses offered with

the cartoons. I asked five counselors trained in TA techniques  to classify the responses into egostates,

and in 6%, 2%, 19%, 26% and 8% of the responses, they disagreed with McCarley.

An additional factor to consider is McCarley's (1974) report of test-retest correlation coefficients

ranging from .47 to .73. This low reliability for McCarley's test makes the 44.4% direct hit rate look

better than a higher reliability would have. But, of course, it may simply indicate that the same cartoon

does not always evoke the same egostate in a person. 

The left hemisphere amplitude density data were the only 16 dimensional data set attaining

significance on MANOVA. Of course, with more subjects, it is possible (even likely) that other data

would have yielded significance. But the superiority of left hemisphere EEG in this discrimination task

still needs explanation. The left hemisphere normally manages verbal tasks (Penfield & Roberts, 1974),

and the critical parts of the slide were textual, verbal material. The task of reading the stimulus text and

the response texts, to select a response, may have been primarily a left hemisphere task. Subjects were

asked to use their right hands to push response buttons, and this left hemisphere motor task may have

contributed to hemispheric specialization of the EEG response.  
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Even the significance of the left hemisphere EEG data is marginal (p .05), with data from only four

subjects. The four different MANOVA approaches used yielded conflicting results, probably because of

the lack of equality of group dispersions. Nevertheless, it seemed justifiable to proceed with further

analysis of the left hemisphere EEG data.

The phase data might have reached significance, but for the program error which spoiled collection

of Left vs.Right phase data (see Table 9). It would be worthwhile to collect such phase data in any

future study of this type.

The most outstanding feature of the left hemisphere amplitude density data in Table 8 is the

abundance of low frequency EEG and lack of high frequency EEG associated with the Parent egostates.

One possible, though unwelcome, explanation for this might be a high level of movement artefact

associated with the Parent states, producing false high amplitude low frequency non-EEG signals. Such

movement artefacts would probably be accompanied by high EMG levels in the EEG data, an increase

in the amplitude of the 22 - up Hz frequency band.

Amplitude density data do not directly yield information about the amplitude of EEG signals. A

high amplitude density could be produced by sustained moderate amplitudes or by occasional high

amplitudes. To investigate this question, the data in Tables 11 through 13 were computed from the

combination of the 16 dimensional total amplitude raw data and the frequency of occurrence data

constructed from the 128 point histograms.

From Table 13 it appears that the high amplitude density in the low frequency bands associated

with the Parent egostates is not due to high amplitude movement artefact. The average amplitude in

these frequency bands is actually depressed, and the high amplitude density results from a high

frequency of occurrence of these low frequency EEG components. The amplitude of the 22 - up Hz

frequency band is also depressed, an indication that high amplitude EMG activity probably was not a

major factor.
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In Table 12 it can be seen that the overall amplitude density for the Parent egostates is substantially

lower than the other egostates, probably an indication of general EEG activation. One possible

explanation which cannot be eliminated, however, is that slow eye movements may have been more

frequent for the Parent egostates, and that the weak low frequency signals from these eye movements

might have contaminated the EEG data. Recordings of eye movements should be part of future studies

of this kind. 

In Table 16 the 15 variables included in the final classification are listed in order of their

discriminating power. The most strongly discriminating variable is the 4 - 5 Hz left hemisphere EEG

amplitude density measure. From the classification coefficients it can be seen that a peak at this point in

the spectrum was a strongly distinguishing feature of the Nurturing Parent egostate.

The Adult egostate's most distinguishing characteristic seems to be elevated BSRF-BSRA, with

depressed latency following a close second. A strong peak in the "below 4 Hz" band seems typical of

the Adaptive Child egostate, together with a peak in the 14 - 16 Hz band.

There does not seem to be a single variable in Table 16 which peaks strongly for Rebellious Child

or Punative Parent. Looking at Table 12, it appears that one difference between these egostates is that

the overall frequency of occurrence, average amplitude and amplitude density are substantially lower

for the Punative Parent egostate. 

From Walter's (1963) reports of theta bursts associated with frustration in children, it might be

expected that a peak in the theta frequency range (4 - 8 Hz) would have been associated with the Child

egostates. This pattern was not clearly observed. Interestingly, there does seem to be a peak in the 10 -

12 Hz region in the Table 13 average amplitude data for the Rebellious Child egostate, with a weaker

peak at the 5 - 6 Hz subharmonic frequency. The Adaptive Child data in the same table show a broad

peak in the upper alpha and lower beta bands, from 11 to 16 Hz. Because these results did not reach a

high level of statistical significance, they should be considered to be only interesting speculation at this

stage.
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Returning to Table 16, it is interesting to note that neighboring frequency bands may have widely

differing discriminant coefficients, e.g. the 13 - 14 Hz band and the 14 - 16 Hz band. One interpretation

of this may be that the frequency bands were too broad, and that future analyses should sort brainwaves

into more frequency categories.

It also seems clear that low frequency EEG signals often blocked the measurement of higher

frequency EEG signals, due to the capture effect discussed in chapter 1, which is typical of the zero

crossing detection technique. This probably accounts in part for the high negative correlation between

the upper and lower frequency bands. A possible solution to this difficulty will be discussed in the next

chapter.

The most useful result of this study was the confirmation of the usefulness of the amplitude-period-

discriminant analysis method of EEG pattern recognition. Further experimental work with more

subjects will be needed before definite conclusions can justifiably be drawn regarding specific patterns

associated with particular egostates.

Chapter 5

CONCLUSIONS AND IMPLICATIONS

The original motivation for this research was a dissatisfaction with the limitations of existing

biofeedback systems. I hoped that patterns of physiological events could be detected which identify

interesting events in consciousness, and that a method for the recognition of these patterns could be

developed, ideally a method which could be applied in real time physiological data analysis, so that

biofeedback training could be conducted for these patterns.
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My incarceration cut short the experimental portion of the research, and usable data were collected

from only four subjects. Yet the analysis of these data did yield significant differences, in both EEG and

non-EEG measures, for the five egostates in the Ego State Inventory, and useful conclusions can be

drawn from these data.

It is possible to detect useful physiological correlates of McCarley's (1974) egostates. The primary

goal of this research was methodological, but some information about the correlates of egostates was

also obtained as a result of the analysis. The Adult egostate was confirmed as the state with the least

arousal and shortest response latency, while the Parent egostates were found to exhibit the strongest

arousal in all physiological measures.

Of the non-EEG measures, skin resistance (both BSR and GSR) and response latency proved to be

useful measures. The EMG electrode placements were chosen poorly and no conclusions could be

drawn regarding EMG. The skin temperature data did not show significant results, probably due to the

long latency of this response and the fast pace of the experiment (the average slide was viewed for only

20 seconds).

Of the EEG measures, only the left temporal EEG revealed significant differences among the five

egostates, though the other EEG measures might have attained significance if more subjects had

participated in the experiment. Amplitude-period EEG analysis was demonstrated to be a useful

analytical method for this application. The 128 point histogram approach did not prove to be helpful,

and the most useful data were the amplitude density, frequency of occurrence and average amplitude

measures. A programming error spoiled phase data collection, and no conclusions could be drawn

regarding the usefulness of that measure.

Discriminant analysis proved to be a useful analytical method for finding the best subset of

variables, and for classification of the slides into egostates. By combining many physiological variables

in the final discriminant equation, a classification method results which can obtain respectable accuracy

despite variations from subject to subject in physiological response pattern. This may make it possible
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to avoid the necessity Pinneo and Hall (1975) reported, for example, of computing different recognition

templates for every subject.

The Ego State Inventory has a number of flaws when applied in this type of experiment. It is a

forced multiple choice  test, and subjects frequently found that none of the available responses really

applied. The responses were sometimes ambiguous, and even trained TA therapists did not always

agree (see chapter 4) on the egostate corresponding to each response. Despite these limitations, the

results indicate that the Ego State Inventory can be used as a simple source of stimuli for this sort of

research.

Implications for Further Research

A number of ideas for improving data collection and analytical techniques have resulted from this

study. The amplitude-period EEG analysis method, with its flexibility, may see more use if some of its

limitations can be overcome. The capture effect is probably its most severe limitation, because it allows

strong signals to block the measurement of weaker signals of interest.

In speech recognition research, a simple method has been developed for overcoming this

limitation, and this method may be profitably applied to EEG analysis in future research. The raw data

can be separated into several frequency bands with analog filters, and each band can be independently

analyzed by the amplitude-period method. For EEG analysis, as few as three bands would produce a

great improvement in analytical scope, by separating the higher amplitude low frequency signals, the

medium amplitude alpha-theta signals and the weak high frequency components. If the passbands of the

filters in such a system were allowed to overlap slightly, the data from the three detectors could be

combined to provide accurate amplitude, amplitude density and frequency of occurrence data for a

broad spectrum of EEG signals.



88

EEG data might be sorted into categories 1/2 Hz or less wide, with the total amplitude and the

number of half-cycles in each category being the primary data stored in memory. These data, together

with the duration of each epoch, would be sufficient for the calculation of amplitude density, average

amplitude and frequency of occurrence spectra.

A biofeedback system for emotion training might include two or more EEG channels, two or more

EMG channels (the corrugator and depressor facial muscles are good candidates), eye movement

recording and a skin resistance channel. The system would collect d while being trained in the

recognition of an event in consciousness. Then stepwise discriminant analysis could be done, to select

the best set of variables for classification, and classification coefficients and constants could be

computed. In the biofeedback mode, real time data would be used in the calculation of posterior

probabilities, using the classification coefficients obtained previously, and feedback could be provided

to indicate closeness to the desired state.

In an 8080A system with 2 MHz clock, running Polymorphic Systems  BASIC, classification

calculations for 15 variables and five egostates took about one second per egostate. To accomplish real

time physiological data analysis and classification, the use of two or more linked processors would

speed this process. A floating point arithmetic processor such as the AMD 9511 could be used to speed

the calculation process by at least an order of magnitude, thus permitting short latency feedback. 

The use of slides from the Ego State Inventory was a compromise made in the interest of

simplification. In future research, it may be possible to use the techniques of psychodrama to evoke the

events of interest. This would permit the use of observers as objective judges of the presence or absence

of a desired (or undesired) state; such observers could inform the computer of their judgements via

keyboards. The study of states which are not objectively identifiable might proceed with subjective

reports from the subject, as in the study reported here.
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Movement artefacts would be a more serious problem in a psychodrama study, and would make

accurate EEG data collection more difficult. But it is possible that recording body movements might

yield useful data on identity states. There may be patterns which could be detected in such movements.

Speculating along the same line, period-amplitude analysis of eye movements might yield useful

data regarding identity states, and should be part of any future study.

If movement artefacts are a serious problem in psychodrama, it may be possible to use guided

imagery or motion pictures to evoke identity states. 

Computer assisted learning (CAL) is an example of a possible application of this methodology.

Pierre St. Jean (1978) has described how a CAL system could be augmented with biofeedback training.

In simple CAL, the computer presents information to the student in small blocks, with questions

interspersed. If the student answers a question correctly, more new material is presented, but if a

question in incorrectly answered, the old material is reviewed, or sometimes presented from a new

perspective.

The student's responses to these questions could be used to detect what St. Jean calls "High

Learning States," those states of consciousness in which the student can learn quickly. The

methodology described in this dissertation could be used to calculate discriminant coefficients for

physiological identification of high learning states, drowsy states, focussed attention, etc., and the CAL

system could branch from its normal flow of textual presentation into a rest period, a more arousing

audio-visual presentation or even a conventional biofeedback training session, depending on the

student's physiological state.

In theraputic applications, the identification of the correlates of a desired or undesired emotion or

other event in consciousness would open the door to voluntary training in the control of that state. This

would be of much more practical value if it turns out to be possible to use the same set of discriminant

coefficients for any subject, as it would allow people skilled in attaining a desired state to produce

training templates for unskilled patients or students to use. If it proves possible to reliably identify
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physiological patterns associated with the desire for heroin, for example, it might be possible to offer

addicts training in suppression of that physiological state. Or, if it proves possible to identify the

correlates of a non-attached (enlightened, desireless) state, perhaps training in attainment of that state

would be possible (within the limitations of the contradiction implicit in desiring desirelessness). I do

not suggest that we should work toward training for some standardized state of consciousness but rather

that it would be useful to have a wider selection of states available to each person. 

The use of microcomputers to generate effective feedback signals may help in pattern biofeedback

training. For example, it would be possible to have a microcomputer sketch a cartoon facial expression

as a feedback signal to indicate the detected identity state. A mirror for emotions would surely be a

useful therapeutic tool.

Such notions are still in the category of speculation, but the possibility may exist for "decoding the

body's language" by recording the correlates of many specific emotional states, and this might lead to

the possibility of rich new communication modalities, ways of sharing experiences which are now

locked inside each of us.
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Appendix A   The Ego State Inventory
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